

AS Sertifitseerimiskeskus (Certification Centre Ltd.)

JDigiDoc Programmer’s Guide

Document Version: 3.12

Library Version: 3.12

Last update: 22.02.2016

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 2 / 80

1. Document versions

Document information

Created on 22.01.2013

Reference JDigiDoc Programmer’s Guide

Receiver Sertifitseerimiskeskus AS

Author Veiko Sinivee, Kersti Üts, Kristi Uukkivi

Version 3.12

Version information

Date Version Changes

 2.7 The latest version of “JdigiDoc Programmer’s Guide”
created by Veiko Sinivee

30.09.2011 2.701 Initial draft by KnowIT for the new version based on v2.7,
with following changes and additions:

- under Introduction: added general overview info about the
document contents, DigiDoc framework, security model and
digitally signed file formats

- under Overview: updated lists for References, Terms and
acronyms and Dependencies/Environment (adding Apache
Ant, Java Mail and JCE Unrestricted Policy Files)

- under JdigiDoc architecture: added package diagram,
included ee.sk.xmlenc, ee.sk.xmlenc.factory,
ee.sk.digidoc.c14n and ee.sk.digidoc.tsl to the JdigiDoc
packages overview list

- under JdigiDoc utility: added general info on usage,
configuration options, list of commands; added detailed
explanation to main commands and command line
parameters; added sample use cases for commonly used
tasks with the utility tool

- under JdigiDoc testing: added list of currently supported
tokens and CA’s; testing results for XadES Remote
Plugtests and sample testing procedures for cross-usability

- renewed overall document formatting and styles, based on
SK’s templates

24.10.2011 2.702 Revised according to developer feedback; additional
information added for configuration entries, national
solutions and cross-border support.

30.12.2011 2.7.1 Revised API description and PKCS12 support.

20.02.2012 3.6 Updated to 3.6 version

22.05.2012 3.6.1 Revised environment, configuration, certificates’ usage and
JdigiDoc utility program’s description

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 3 / 80

22.01.2013 3.7 Updated to 3.7 version: removed EMBEDDED content type
support, added description of signature verification settings,
improved description of configuration file usage. Updated
information about supporting older DigiDoc formats.

18.07.2013 3.8 Updated according to changes in 3.7.1 and 3.8 versions of
the library: added information about verification warnings
(chap. 5.1.7); added BDOC 2.0 signature format’s support
(removed BDOC 1.0 support); added ECC signature
algorithm support. Changed the structure of the document
for better readability, added chapter 8 describing JDigiDoc
library’s implementation notes.

11.12.2013 3.8.0.1 Updated signed file’s validation process for API users
(added chap. 5.2), updated BDOC 2.1 format’s nonce
calculation method, updated signer role handling, removed –
list command from utility program.

13.12.2013 3.8.0.2 Fixed description of adding data file to container from a byte
stream (method setBody). Added description of additional
setting signature profile before signing if the container’s
content has been read in from input stream (chap. 5.1.4).

27.02.2014 3.8.1 Updated according to changes in version 3.8.1 of the library.
Updated description of adding data files to DDOC/BDOC
containers from memory, including changes to
setBody(byte[]) method (chap. 5.1.3). Added jdigidoc.java
utility program’s command –ddoc-add-mem. Updated
DigiDoc file’s validation process (chap. 5.2). Removed
Mobile-ID support.

24.08.2014 3.9 Updated according to changes in v3.9 of the library.
Refactored chapter 5.3 “Encryption and decryption”

16.09.2014 3.9 Updated BDOC 2.1 container specific implementation notes,
in JdigiDoc library, the signatures*.xml file’s sequence
number is counted from one.

29.01.2015 3.10 Updated according to changes in v3.10 of the library.

05.03.2015 3.10 Updated information in case of direct encryption/decryption
vs using an intermediary DDOC container

29.06.2015 3.11 Updated description of checking for test signatures in chap.
5.2.3.1. Updated test OCSP responder address.

22.02.2016 3.12 Added information about data file’s mime-type formatting
and usage of special characters in data file name.

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 4 / 80

Table of contents

1. Document versions ... 2

2. Introduction ... 6

 About DigiDoc .. 7

 Format of digitally signed file ... 7

2.2.1 BDOC 2.1 file format .. 8

2.2.2 DIGIDOC-XML 1.3 file format .. 10

2.2.3 Comparison of BDOC 2.1 and DIGIDOC-XML 1.3 implementations 10

2.2.4 DigiDoc time-marking security model ... 11

3. Overview ... 12

 References and additional resources .. 12

 Terms and acronyms ... 14

 Supported functional properties .. 16

 Component model ... 18

 JDigiDoc architecture .. 18

 Dependencies .. 19

 Environment .. 20

4. Configuring JDigiDoc .. 22

 Loading configuration settings ... 22

 Configuration parameters .. 22

5. Using JDigiDoc API .. 30

 Digital signing .. 30

5.1.1 Initialization ... 30

5.1.2 Creating a DigiDoc document .. 30

5.1.3 Adding data files ... 30

5.1.4 Adding signatures ... 32

5.1.5 Adding an OCSP confirmation ... 34

5.1.6 Reading and writing digidoc documents .. 34

 Validating signed documents .. 34

5.2.1 Reading and parsing the DigiDoc document ... 35

5.2.2 Using the main validation method .. 35

5.2.3 Checking for additional errors/warnings ... 36

5.2.4 Determining the validation status ... 36

5.2.5 Additional information about validation .. 40

 Encryption and decryption ... 41

5.3.1 Format of the encrypted file ... 41

5.3.2 Encryption .. 41

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 5 / 80

5.3.3 Parsing and decryption... 45

6. JDigiDoc utility program .. 47

 General commands ... 47

 Digital signature commands .. 48

6.2.1 Creating new DigiDoc files and signing .. 50

6.2.2 Reading DigiDoc files and verifying signatures .. 53

 Encryption commands ... 55

6.3.1 Reading encrypted files .. 56

6.3.2 Encrypting files ... 57

6.3.3 Decrypting files ... 60

7. National and cross-border support ... 62

 National PKI solutions and support ... 62

7.1.1 Supported Estonian Identity tokens ... 62

7.1.2 Trusted Estonian Certificate Authorities ... 62

 Cross-border support ... 65

7.2.1 Trusted Service Provider Lists ... 65

 Interoperability testing ... 65

7.3.1 XAdES/CAdES Remote Plugtests ... 65

7.3.2 ASiC Remote Plugtests .. 66

7.3.3 DigiDoc framework cross-usability tests .. 67

7.3.4 Testing JDigiDoc API in JDigiDoc utility program .. 67

8. JDigiDoc library’s implementation notes ... 71

 General implementation notes .. 71

 DIGIDOC-XML 1.3 specific implementation notes .. 72

 BDOC 2.1 specific implementation notes .. 73

Appendix 1: JDigiDoc configuration file ... 75

Appendix 2: Signature types .. 79

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 6 / 80

2. Introduction

This document describes JDigiDoc - a Java library of the Estonian ID-software. It is a basic
building tool for creating applications handling digital signatures and their verification,
encrypting and decrypting data. The digitally signed files are created in „DigiDoc format“ (with
.ddoc or .bdoc file extensions), compliant to XML Advanced Electronic Signatures (XAdES)
[4], technical standard published by European Telecommunication Standards Institute (ETSI).
JDigiDoc is also capable of encrypting/decrypting files (signed or unsigned), according to W3C
XML Encryption Recommendation (XML-ENC).

Development of the library can be monitored in GitHub environment: https://github.com/open-
eid/jdigidoc.

This document covers the following information about JDigiDoc:

 Section 2 introduces the Estonian ID-software, its general security model and
formats available for digitally signed files.

 Section 3 gives an overview of the functional properties supported by JDigiDoc
library, describes the library’s architecture and system requirements for using
JDigiDoc.

 Section 4 describes JDigiDoc library’s configuration possibilities.

 Section 5 explains the library’s API for some of the most commonly used document
signing and encryption tasks.

 Section 6 explains using the command line utility program for JDigiDoc, including
sample use cases.

 Section 7 covers the currently supported tokens and CA’s which have been tested
with JDigiDoc, the current status of cross-border support for JDigiDoc and
interoperability testing of JDigiDoc library’s functionality.

 Section 8 gives an overview of JDigiDoc library’s implementation notes which
provide information about specific features of digitally signed files that are not
defined in standards or specification documents but are implemented in JDigiDoc
library.

 Appendix 1 provides a sample JDigiDoc.cfg configuration file.

 Appendix 2 describes different digital signature types that can be created with
JDigiDoc library.

http://open-eid.github.io/
https://github.com/open-eid/jdigidoc
https://github.com/open-eid/jdigidoc

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 7 / 80

 About DigiDoc

JDigiDoc library forms a part of the wider ID-software system framework which offers a full-
scale architecture for digital signature and documents, consisting of software libraries (C, C++
and Java) [20], web service [15] and end-user applications such as DigiDoc Portal and
DigiDoc3 Client according to the following figure:

1. DigiDoc framework

It is easy to integrate DigiDoc components into existing applications in order to allow for

creation, handling, forwarding and verification of digital signatures and support file

encryption/decryption. All applications share a common digitally signed file formats (current

versions are DIGIDOC-XML 1.3 [1] and BDOC 2.1 [2]).

 Format of digitally signed file

Actively used digitally signed file formats in ID-software system are:

 BDOC 2.1 – new format, recommended for new signatures, described in [2].

 DIGIDOC-XML 1.3 - described in [1];

More information of the life cycle of digitally signed file formats can be found from
http://www.id.ee/?lang=en&id=36161. Transformation to BDOC 2.1 format is described in
http://www.id.ee/?id=34336.

File extension .bdoc or .ddoc is used to distinguish digitally signed files according to the
described file formats.

Other historical formats that were used previously are SK-XML, DIGIDOC-XML 1.1, DIGIDOC-
XML 1.2 and BDOC 1.0.

The format of the digitally signed file is based on ETSI TS 101 903 standard called XML
Advanced Electronic Signatures (XAdES) [4]. The XAdES standard defines formats for

OCSP

DigiDoc libraries

(C, C++, Java)

WebService

 MSSP

DigiDoc3
Client

DigiDoc
portal

Application Application

CAPI/CSP
CNG/Minidriver
PKCS#11
PKCS#12

XML

ID card

Mobile phone

http://open-eid.github.io/
http://www.id.ee/?lang=en&id=36161
http://www.id.ee/?id=34336

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 8 / 80

advanced electronic signatures that remain valid over long periods and incorporate additional
useful information in common use cases (like indication of the role or resolution of the
signatory). DIGIDOC-XML 1.3 and BDOC 2.1 file formats define a subset of this standard.

In order to verify whether the signer’s certificate was valid at the (claimed) time of signing,
“time-marks” are used in addition to “time-stamps”. In case of JDigiDoc library, only the
time-marking profile is supported (see also chap. 2.2.4), signing (and certificate validation)
time comes with OCSP response.

Time-marking profile enables the following features:

 allows for incorporating following signed properties

o Certificate used for signing,

o Claimed signing time (the signer’s computer time),

o Signature production place (optional),

o Signer role or resolution (optional).

 incorporates full signer certificate’s validity information within the signature

o OCSP response (providing trusted signing time and signer certificate’s
validity confirmation),

o OCSP responder certificate.

As a result, it is possible to verify signature validity without any additional external information
– the verifier should trust the issuer of signer’s certificate and the OCSP responder’s certificate.

2.2.1 BDOC 2.1 file format

The format of the BDOC 2.1 digitally signed file is in compliance with the ETSI standard TS
103 171 [8] which further profiles the XAdES signature by putting limitations on choices.

The BDOC Basic Profile (EPES profile) is an XML structure containing a single cryptographic
signature over the well-defined set of data. It does not contain any validation data for full
signature validation such as timestamps or certificate validity confirmations. The profile is
based on XAdES-EPES (Explicit Policy based Electronic Signature, see [4]).

In case of BDOC with time-marks (TM profile), the proof of validity of the signer’s certificate
is added to the signature, the validity confirmation is obtained by using OCSP protocol (see
also chap. 2.2.4). The BDOC TM profile is compliant to XAdES LT-Level requirements. The
OCSP request’s “nonce” field is a DER-encoding of the following ASN.1 data structure:1

TBSDocumentDigest ::= SEQUENCE {

algorithm AlgorithmIdentifier,

digest OCTET STRING

}

The element digest is a hash value of the binary value of the signature and the element

algorithm determines used hash algorithm defined in RFC 5280 ([14]) clause 4.1.1.2.

In case of BDOC 2.1 file format, the original data files (which were signed) along with the
signatures are encapsulated within a ZIP container which is based on ETSI standard TS
102 918 [6] called Associated Signature Containers (ASiC). The ETSI TS 103 174 [9]
profiles in further on. The container type used in case of BDOC 2.1 documents is Associated
Signature Extended form (ASiC-E).

ASiC-E container is a ZIP file consisting of the following objects:

1 Note: OCSP nonce field’s value is calculated differently in case of DIGIDOC-XML 1.3 and BDOC 2.1
formats. See the specification documents of these file formats for more information.

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 9 / 80

 a file named “mimetype”, containing only the following value:
application/vnd.etsi.asic-e+zip

 data files in original format.

 META-INF subdirectory, consisting of:

o manifest.xml – a file containing list of all folders and files in the
container. The list does not contain the “mimetype” file and files in
META-INF subdirectory.

o signatures*.xml – one file for each signature, ‘*’ in the file’s name
denotes the sequence number of a signature (counting starts from zero).
The signatures*.xml file also incorporates certificates, validity
confirmation and meta-data about the signer.

When BDOC 2.1 container is signed then all files in the container are signed, except of the
mimetype file and files in META-INF subdirectory.

2. BDOC 2.1 container’s contents

BDOC 2.1 container (ASiC-E)

Data files mimetype

manifest.xml

signatures*.xml

META-INF subdirectory

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 10 / 80

2.2.2 DIGIDOC-XML 1.3 file format

In case of DIGIDOC-XML 1.3 file format, the original data files (which were signed) along with
the signature(s), validation confirmation(s) and certificates are encapsulated within a single
XML container with <SignedDoc> as a root element.

3. SignedDoc container

2.2.3 Comparison of BDOC 2.1 and DIGIDOC-XML 1.3 implementations

The following table gives an overview of the main differences between DIGIDOC-XML 1.3 and
BDOC 2.1 features that are implemented in JDigiDoc.

Note: the implemented features do not completely cover all the features that are described in
the specification documents. See chapter “8 JDigiDoc library’s implementation notes” for more
information.

Feature DIGIDOC-XML 1.3 (.ddoc) BDOC 2.1 (.bdoc)

Container Format Single XML file Zip-file

Data file adding
mode

- EMBEDDED_BASE64 (embeds
binary data in base64 encoding)

Note: EMBEDDED (embeds pure

text or XML and DETACHED (adds

only reference to an external file)

data file adding modes are no

longer supported

- BINARY

Contents of the
container

- Data files embedded in the
single ddoc XML file in base64
encoding

- Signatures embedded in the
single ddoc XML file

- Data files in original format

- mimetype file with mime-type of
the container

- one META-INF/signatures*.xml
file for each signature

- META-INF/manifest.xml file with
meta-data

SignedDoc container

Data files

Signature
value

Certificate of
signer

Validity

confirmation

Certificate of
responder

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 11 / 80

Currently
supported profiles

N/A

Note: signatures added to DDOC

documents are analogous to BDOC
signatures with TM profile.

EPES - signature without time-mark,

file can be created but gives
validation error. Not tested
periodically in JDigiDoc.

TM – (time-mark) the default profile,

tested periodically.

Note1: due to historical reasons, the

EPES profile is referred to as BES in
JDigiDoc.

Note 2: TS profile (using time-

stamps) are not supported.

Supported data file
digest type

Only SHA-1 (set automatically)
Supported and tested digest type is
SHA-256

Supported

signature value

digest type

Only SHA-1 (set automatically)

Supported and tested digest types:

SHA-224

SHA-256

Supported

signature

algorithm
RSA

RSA

ECDSA

2.2.4 DigiDoc time-marking security model

The general security model of the time-marking mechanism used in ID-software works by
obtaining proof of validity of the signer’s X.509 digital certificate issued by a certificate authority
(CA) at the time of signature creation.

This proof (also named as “time-mark”) is obtained in the format of Online Certificate Status
Protocol (OCSP, [7]) response. Also, the hash of the created signature is sent within the OCSP
request and received back within the response. This allows interpreting of the positive OCSP
response as “at the time I saw this digitally signed file, corresponding certificate was valid”,
meaning that the OCSP response gives proof for the signer certificate’s validity and also proof
of the time when the signature existed. Thus, the time of issuing the OCSP response is
interpreted as trusted signature creation time.

The OCSP response is stored within the signed document. This allows the signing time and
signer certificate’s validity to be validated later on, even after the signer’s certificate has
become invalid.

The OCSP service is acting as a digital e-notary confirming signatures created locally with a
smart card. From infrastructure side, this security model requires a standard OCSP responder.
Hash of the signature is placed on the “nonce” field of the OCSP request structure. In order to
achieve the freshest certificate validity information, it is recommended to run the OCSP
responder in “real-time” mode meaning that:

 certificate validity information is obtained from live database rather than from
CRL (Certificate Revocation List)

 the time value in the OCSP response is actual (as precise as possible)

To achieve long-time validity of digital signatures, a secure log system is employed within the
model. All OCSP responses and changes in certificate validity are securely logged to preserve
digital signature validity even after private key compromise of CA or OCSP responder. It is
important to notice that additional time-stamps are not necessary when employing the security
model described:

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 12 / 80

 time of signing and time of obtaining validity information is indicated in the OCSP
response

 the secure log provides for long-time validity without need for archival
timestamps

4. DigiDoc security model

3. Overview

The current chapter gives an overview of JDigiDoc software library by describing the
supported functionality, the general architecture and JDigiDoc library’s dependencies.

 References and additional resources

[1] DIGIDOC-XML 1.3 DigiDoc format specification, version 1.3.0

http://id.ee/public/DigiDoc_format_1.3.pdf

[2] BDOC2.1:2013 BDOC – Format for Digital Signatures. Version 2.1:2013

https://www.sk.ee/repository/bdoc-spec21.pdf

http://id.ee/public/bdoc-spec21-est.pdf

[3] XML-DSIG IETF RFC 3275: XML-Signature Syntax and Processing

http://www.ietf.org/rfc/rfc3275.txt

[4] XAdES ETSI TS 101 903 V1.4.2 (2010-12) – XML Advanced Electronic

Signatures

http://www.etsi.org/deliver/etsi_ts/101900_101999/101903/01.04.02

_60/ts_101903v010402p.pdf

OCSP CA
database

Secure log

ôI just signed the
document using
this certificateô

ôWhen I saw this
signed document, the
corresponding
certificate was validô

http://id.ee/public/DigiDoc_format_1.3.pdf
https://www.sk.ee/repository/bdoc-spec21.pdf
http://id.ee/public/bdoc-spec21-est.pdf
http://www.ietf.org/rfc/rfc3275.txt
http://www.etsi.org/deliver/etsi_ts/101900_101999/101903/01.04.02_60/ts_101903v010402p.pdf
http://www.etsi.org/deliver/etsi_ts/101900_101999/101903/01.04.02_60/ts_101903v010402p.pdf

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 13 / 80

[5] OpenDocument OASIS "Open Document Format for Office Applications. Version

1.2 Part 3: Packages"

http://docs.oasis-open.org/office/v1.2/cs01/OpenDocument-v1.2-

cs01-part3.html#__RefHeading__752803_826425813

[6] ASiC ETSI TS 102 918 V1.2.1 (2012-02) - Associated Signature

Containers

http://www.etsi.org/deliver/etsi_ts/102900_102999/102918/01.02.01

_60/ts_102918v010201p.pdf

[7] RFC6960 X.509 Internet Public Key Infrastructure Online Certificate Status

Protocol – OCSP

http://tools.ietf.org/html/rfc6960

[8] XAdES Baseline

Profile

ETSI TS 103 171 V2.1.1 (2012-03)

http://www.etsi.org/deliver/etsi_ts/103100_103199/103171/02.01.01

_60/ts_103171v020101p.pdf

[9] ASiC Baseline

Profile

 ETSI TS 103 174 V2.1.1 (2012-03)

http://www.etsi.org/deliver/etsi_ts/103100_103199/103174/02.01.01

_60/ts_103174v020101p.pdf

[10] DSA Estonian Digital Signatures Act

http://www.legaltext.ee/et/andmebaas/tekst.asp?loc=text&dok=X30

081K6&keel=en&pg=1&ptyyp=RT&tyyp=X&query=digitaalallkirja

[11] XML-ENC http://www.w3.org/TR/xmlenc-core/

[12] CDOC 1.0 Encrypted DigiDoc Format Specification

http://id.ee/public/SK-CDOC-1.0-20120625_EN.pdf

[13] TSL ETSI TS 102 231 ver. 3.1.2 (2009-12) - Electronic Signatures and

Infrastructures (ESI); Provision of harmonized Trust-service status

information

[14] RFC 5280 Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile

http://tools.ietf.org/html/rfc5280

[15] DigiDocService

Specification

EN: http://sk.ee/upload/files/DigiDocService_spec_eng.pdf

ET: http://www.sk.ee/upload/files/DigiDocService_spec_est.pdf

[16] X.509 V3

Certificate Profile

ETSI TS 102 280 (V1.1.1) - X.509 V3 Certificate Profile for

Certificates Issued to Natural Persons

http://www.etsi.org/deliver/etsi_ts/102200_102299/102280/01.01.01

_60/ts_102280v010101p.pdf

[17] ESTEID profile Certificates on identity card of Republic of Estonia, version 3.3

https://sk.ee/upload/files/ESTEID_profiil_en-3_3.pdf

http://docs.oasis-open.org/office/v1.2/cs01/OpenDocument-v1.2-cs01-part3.html#__RefHeading__752803_826425813
http://docs.oasis-open.org/office/v1.2/cs01/OpenDocument-v1.2-cs01-part3.html#__RefHeading__752803_826425813
http://www.etsi.org/deliver/etsi_ts/102900_102999/102918/01.02.01_60/ts_102918v010201p.pdf
http://www.etsi.org/deliver/etsi_ts/102900_102999/102918/01.02.01_60/ts_102918v010201p.pdf
http://tools.ietf.org/html/rfc6960
http://www.etsi.org/deliver/etsi_ts/103100_103199/103171/02.01.01_60/ts_103171v020101p.pdf
http://www.etsi.org/deliver/etsi_ts/103100_103199/103171/02.01.01_60/ts_103171v020101p.pdf
http://www.etsi.org/deliver/etsi_ts/103100_103199/103174/02.01.01_60/ts_103174v020101p.pdf
http://www.etsi.org/deliver/etsi_ts/103100_103199/103174/02.01.01_60/ts_103174v020101p.pdf
http://www.legaltext.ee/et/andmebaas/tekst.asp?loc=text&dok=X30081K6&keel=en&pg=1&ptyyp=RT&tyyp=X&query=digitaalallkirja
http://www.legaltext.ee/et/andmebaas/tekst.asp?loc=text&dok=X30081K6&keel=en&pg=1&ptyyp=RT&tyyp=X&query=digitaalallkirja
http://www.w3.org/TR/xmlenc-core/
http://id.ee/public/SK-CDOC-1.0-20120625_EN.pdf
http://tools.ietf.org/html/rfc5280
http://sk.ee/upload/files/DigiDocService_spec_eng.pdf
http://www.sk.ee/upload/files/DigiDocService_spec_est.pdf
http://www.etsi.org/deliver/etsi_ts/102200_102299/102280/01.01.01_60/ts_102280v010101p.pdf
http://www.etsi.org/deliver/etsi_ts/102200_102299/102280/01.01.01_60/ts_102280v010101p.pdf
https://sk.ee/upload/files/ESTEID_profiil_en-3_3.pdf

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 14 / 80

[18] Institution

certificate profile

Profile of institution certificates and Certificate Revocation Lists,

version 1.3

https://sk.ee/upload/files/SK_Profile%20of%20institution%20certific

ates%20and%20Revocation%20List.pdf

[19] JDigiDoc release

notes

JDigiDoc library’s release notes

http://id.ee/index.php?id=35783

[20] DigiDoc libraries http://id.ee/index.php?id=30486

[21] ID-software

GitHub project

https://github.com/open-eid

[22] JDigiDoc GitHub

repository

https://github.com/open-eid/jdigidoc

 Terms and acronyms

ASiC Associated Signature Containers

ASiC-E Extended Associated Signature Containers. A type of ASiC container.

BDOC 2.1 (.bdoc) Term is used to denote a digitally signed file format which is a profile

of XAdES and follows container packaging rules based on

OpenDocument and ASiC standards. The document format has been

defined in [2].

BES Basic Electronic Signature (XAdES-BES). A form of XAdES signature

which does not incorporate any validation data, i.e. OCSP

confirmation (time-mark) or time-stamp has not been added to the

signature.

Note: for historical reasons, in JDigiDoc library’s source code, the term

“BES” is used to denote both BES form and EPES form of a signature.

The signature form is also referred to as “technical signature” in the

context of the current document.

In BDOC 2.1 specification, BES signature is used as a base form for

qualified signature with a time-stamp (see [2], chap 6.2; time-stamps

are currently not supported in JDigiDoc library). In DIGIDOC-XML 1.3

(see [1]), BES signature is used as a base form for a qualified

signature with time-mark.

Note: in the context of Estonian legislation, this form of a signature is

not qualified electronic signature and is not equivalent to a handwritten

signature.

CDOC (.cdoc) The term denotes a format of an encrypted DigiDoc document that is

based on XML-ENC profile. The document format has been defined in

[12].

https://sk.ee/upload/files/SK_Profile%20of%20institution%20certificates%20and%20Revocation%20List.pdf
https://sk.ee/upload/files/SK_Profile%20of%20institution%20certificates%20and%20Revocation%20List.pdf
http://id.ee/index.php?id=35783
http://id.ee/index.php?id=30486
https://github.com/open-eid
https://github.com/open-eid/jdigidoc

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 15 / 80

CRL Certificate Revocation List, a list of certificates (or more specifically, a

list of serial numbers for certificates) that have been revoked, and

therefore should not be relied upon.

DIGIDOC-XML
(.ddoc)

The term is used to denote a DigiDoc document format that is based

on the XAdES standard and is a profile of that standard. The document

format has been defined in [1].

The profile does not exactly match any subsets described in XAdES

standard – the best format name would be “XAdES-C-L” indicating that

all certificates and OCSP confirmations are present but there are no

“pure” timestamps.

A DIGIDOC-XML file is basically a <SignedDoc /> container that

contains original data files and signatures.

The file extension for DIGIDOC-XML file format is “.ddoc”, MIME-type

is “application/ddoc”.

EPES Explicit Policy based Electronic Signature (XAdES-EPES). A form of

XAdES signature, similar to BES signature form but has an additional

element <SignaturePolicyIdentifier>.

Note: for historical reasons, in JDigiDoc library’s source code, the term

“BES” is used to denote both BES form and EPES form of a signature.

The signature form is also referred to as “technical signature” in the

context of the current document.

In BDOC 2.1 specification, EPES signature is used as a base form for

qualified signature with a time-mark (see [2], chap 6.1).

Note: in the context of Estonian legislation, this form of a signature is

not qualified electronic signature and is not equivalent to a handwritten

signature.

OCSP Online Certificate Status Protocol, an Internet protocol used for

obtaining the revocation status of an X.509 digital certificate

OCSP Responder OCSP Server, maintains a store of CA-published CRLs and an up-to-

date list of valid and invalid certificates. After the OCSP responder

receives a validation request (typically an HTTP or HTTPS

transmission), the OCSP responder either validates the status of the

certificate using its own authentication database or calls upon the

OCSP responder that originally issued the certificate to validate the

request. After formulating a response, the OCSP responder returns

the signed response, and the original certificate is either approved or

rejected, based on whether or not the OCSP responder validates the

certificate.

SK AS Sertifitseerimiskeskus (Certification Centre Ltd.). Certificate

Authority in Estonia

X.509 an ITU-T standard for a public key infrastructure (PKI) and Privilege

Management Infrastructure (PMI) which specifies standard formats for

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 16 / 80

public key certificates, certificate revocation lists, attribute certificates,

and a certification path validation algorithm

XAdES XML Advanced Electronic Signatures, a set of extensions to XML-

DSig recommendation making it suitable for advanced electronic

signature. Specifies precise profiles of XML-DSig for use with

advanced electronic signature in the meaning of European Union

Directive 1999/93/EC.

XML-DSIG a general framework for digitally signing documents, defines an XML

syntax for digital signatures and is defined in the W3C

recommendation XML Signature Syntax and Processing

 Supported functional properties

JDigiDoc is a library of Java classes offering the following functionality:

 creating containers in supported formats and adding data files;

 signing DigiDoc documents using smart cards or other supported cryptographic
tokens;

 adding time marks and validity confirmations to digital signatures using OCSP
protocol;

 validating the digital signatures;

 extracting data files from DigiDoc document;

 digital encryption and decryption of data files.

The following table describes functional features that are supported with JDigiDoc.

Feature Supported values

Signed DigiDoc

document format

- BDOC 2.1 – newer digital signature format, recommended for new

signatures, described in [2].

- DIGIDOC-XML 1.3 – digital signature format, described in [1].

Note: older DigiDoc file formats SK-XML, DIGIDOC-XML 1.1 and

DIGIDOC-XML 1.2 are supported only for backward compatibility in case

of digital signature verification and data file extraction operations (creating

new files and modifying existing files is not supported).

Note: BDOC 1.0 file format is not supported (files in this format are

recognized by the library but handling the files is not supported).

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 17 / 80

Signature profile

Signature profiles are based on the profiles defined by XAdES ([4]).

- TM (time-mark) - the default profile, actual certificates and revocation

data are added to the signed document to allow verification in future
even if their original source is not available; uses time marking. In case

of BDOC 2.1 document format, the “SignaturePolicyIdentifier” element is
mandatory (see also [2]).

- BES/EPES - basic profile, doesn’t provide long term validation. The

signature doesn’t contain any validation data like time-mark or certificate

validity confirmation (OCSP response). The signature with BES or EPES

profile is a technical signature and is expected to produce specific

validation error messages (see also “Appendix 2: Signature types”).

Note1: for historical reasons, in the current document and in JDigiDoc

library, the BDOC 2.1 format’s EPES profile is also referred to as BES.

Note2: TS profile (using timestamps as described in BDOC 2.1

specification [2], chap. 6.2) is not supported in DigiDoc libraries.

Signature creation

module

- PKCS#11 – the default module for singing with smart card (e.g.

Estonian ID card or any other smartcard provided that you have the

external native PKCS#11 driver for it).

- PKCS#12 – module for signing with a software token.

Note: support for M-ID signing via DigiDocService [15] in JDigiDoc is

deprecated.

Cryptographic

token type

- Smart card, e.g. Estonian ID card. Supported signature creation module

is PKCS#11.

- Software token - a PKCS#12 container (.p12 or .pfx) file which includes

a certificate and accompanying public and private keys in a single file.

The private key is protected with a password-based symmetric key. The

token is named “software token” as it is stored in the file system and not

on a smartcard or other physical cryptographic device. Supported

signature creation module is PKCS#12. Note that the signature that is

created with a software token is a technical signature and is expected to

produce verification error messages (see also “Appendix 2: Signature

types”).

- USB cryptostick - Aladdin eToken device. Supported signature creation

module is PKCS#11.

Public-key

algorithm

- RSA

- ECDSA - support for ECDSA algorithm has only been tested with 256 bit

keys prime256v1(secp256r1). Testing has been carried out with

PKCS#12 software tokens (via PKCS#12 signature creation module in

JDigiDoc utility program).

Encrypted

document format
- XML-ENC 1.0

Further information about specific functional features that are not strictly defined in
specification documents but are implemented in JDigiDoc library can be found from chapter
“8 JDigiDoc library’s implementation notes”.

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 18 / 80

 Component model

The figure below describes the architecture of software and hardware components that are
used when creating signatures with JDigiDoc library.

5. Sample JDigiDoc implementation using PKCS#11/ smart cards for digital signing

Component Description

OpenSC Set of libraries and utilities to work with smart cards, implementing

PKCS#11

PKCS#11 Widely adopted platform-independent API to cryptographic tokens (HSMs

and smart cards), a standard management module of the smart card and its

certificates

PC/SC Standard communication interface between the computer and the smart

card, a cross-platform API for accessing smart card readers

IFDHandler Interface Device Handler for CCID readers

CCID USB driver for Chip/Smart Card Interface Devices

Reader Device used for communication with a smart card

 JDigiDoc architecture

JDigiDoc library consists of the following packages:

ee.sk.digidoc – Core classes of JDigiDoc modeling the structure of various XML-DSIG and
XAdES entities. DigiDocException class includes the error codes that are used in the library.

o ee.sk.digidoc.factory – Exchangeable modules implementing various
functionality that you might wish to modify and interfaces to those modules

PC/SC

OpenSC

JDigiDoc

PKCS#11

Reader

CCID

Reader

IFD
Handler

Java Application PKCS#11 Module Host operating
system & Hardware

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 19 / 80

o ee.sk.digidoc.c14n – Classes for XML canonicalization implementation with
TinyXMLCanonicalizer

- ee.sk.digidoc.c14n.common – Additional classes for
TinyXMLCanonicalizer implementation

o ee.sk.digidoc.tsl – Classes modeling the ETSI TS 102 231 V3.1.1. Trust Service
Status List types. Note: the Trust Service Status List (TSL) functionality is
currently not fully supported with JDigiDoc.

ee.sk.utils – Configuration and other utility classes

ee.sk.test – Sample and command line utility programs

ee.sk.xmlenc – Classes modeling XML entities specified in XML-ENC standard

o ee.sk.xmlenc.factory – Classes for parsers of encrypted files

6. JDigiDoc packages

For additional information about the JDigiDoc library’s classes and their contents, see the full
API description (javadoc) that is included in the JDigiDoc library’s distribution package.

 Dependencies

JDigiDoc depends on a number of libraries, some of which are base components and others
which depend on the base modules that have been used.

Base Component Description

Java Platform JDK/JRE 1.5 or newer

Note: currently JDK/JRE versions 1.6 and 1.7 are included in testing

Bouncy-Castle

cryptographic library

Used in cryptographic operations. This library was chosen as it is a

freeware module.

JDigiDoc-*.jar

ee.sk.test

ee.sk.utils

ee.sk.xmlenc

::factory

ee.sk.digidoc

::factory

::tsl

::c14n

JDigiDoc.cfg

Command line
utility

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 20 / 80

TinyXMLCanonicalizer ee.sk.digidoc.c14n. TinyXMLCanonicalizer is a small and very

efficient XML canonicalizer with a small memory footprint and no

further dependencies. Good enough for basic ddoc/bdoc usage, but

has some problems with XML namespaces and special symbols

handling

Jakarta Log4j Required for the Apache XML Security library and by JDigiDoc itself

for logging purposes

Apache Commons

Codec

Required for Base64 encoding

Apache Commons

Compress

Required for using BDOC format with utf-8 encoding

 Environment

The following libraries need to be added to the CLASSPATH environment variable in order to
use JDigiDoc:

Library Description

JDigiDoc-*.jar JDigiDoc library itself (‘*’ denotes the library’s version number)

bcmail-jdk*-151.jar

bcprov-jdk*-151.jar

bcpkix-jdk*-151.jar

or newer

Bouncy-Castle cryptographic library, a Java implementation of

cryptographic algorithms. Choose the releases according to

your JDK version, e.g. for JDK 5.0 Ą bcmail-jdk15-151.jar, etc.

Latest releases available from:

http://www.bouncycastle.org/latest_releases.html

jakarta-log4j-1.2.6.jar or newer Jakarta Log4j library

Latest releases available from:

http://logging.apache.org/log4j/1.2/download.html

 commons-compress-1.3.jar Apache Commons Compress library.

Latest releases available from:

http://commons.apache.org/compress/download_compress.cgi

commons-codec-1.6.jar Apache Commons Codec library.

Latest releases available from:

http://commons.apache.org/codec/download_codec.cgi

iaikPkcs11Wrapper.jar If you want to create RSA-SHA1/SHA2 digital signatures via a

smart card/card reader device and access the latter using a

PKCS#11 driver, then add the library file:

 iaikPkcs11Wrapper.jar

 to CLASSPATH environment variable. It is a set of Java classes

and interfaces that reflects the PKCS#11 API.

• for Windows:

 opensc-pkcs11.dll

 Pkcs11Wrapper.dll

Additionally in Windows environment, you need to copy the

following files:

 opensc-pkcs11.dll

http://www.bouncycastle.org/latest_releases.html
http://logging.apache.org/log4j/1.2/download.html
http://commons.apache.org/compress/download_compress.cgi
http://commons.apache.org/codec/download_codec.cgi

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 21 / 80

 Pkcs11Wrapper.dll (either 64-bit and/or 32-bit

version according to your JDK/JRE’s version)

 to a directory listed in the PATH environment variable

• for Linux:

 libopensc-pkcs11.so or

opesc-pkcs11.so

 libpkcs11wrapper.so

• for OS X:

 libpkcs11wrapper.jnilib

In Linux environment, copy the following shared object libraries:

 libopensc-pkcs11.so or opesc-pkcs11.so

 libpkcs11wrapper.so

to the directory {JAVA_HOME}\jre\lib\i386

JCE Unlimited Strength

Jurisdiction Policy Files:

local_policy.jar

US_export_policy.jar

By default, current versions of the JDK have a deliberate 128-bit

key size restriction built in which throws an

InvalidKeyException, with the message "Illegal key size

or default parameters". If you get this exception, you can

remove the restriction by overriding the security policy files with

others that Sun provides. The version of the policy files must be

the same as the version of your JDK – e.g. for:

JDK 5.0 -> JCE USPF 5

JDK 6.0 -> JCE USPF 6

Copy the JCE Unlimited Strength Jurisdiction Policy Files over

the ones already in the standard JDK/JDRE directory (adjust

pathname separators according to your environment):

{JAVA_HOME}\lib\security .

Note that if you are using Windows, the JDK install will normally

install a JRE and a JDK in two separate places - generally both

of these will need to have the new policy files installed in it.

The JCE Unlimited Strength Jurisdiction Policy Files can be

downloaded from:

http://www.oracle.com/technetwork/java/javasebusiness/downlo

ads/index.html

esteidtestcerts.jar Estonian test certificate package, should be added to the

CLASSPATH when validating or creating signatures with test

certificates. Accessible from:

https://installer.id.ee/media/esteidtestcerts.jar

NB! The package must be removed from classpath in case of

live applications because JDigiDoc library does not give

notifications to users in case of test signatures (except of the

JDigiDoc utility program, since v3.8).

http://www.oracle.com/technetwork/java/javasebusiness/downloads/index.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/index.html
https://installer.id.ee/media/esteidtestcerts.jar

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 22 / 80

4. Configuring JDigiDoc

 Loading configuration settings

JDigiDoc uses the class ee.sk.utils.ConfigManager for reading configuration data from a Java
property file – JDigiDoc.cfg.

There are two alternative methods for loading configuration settings:

1. ee.sk.utils.ConfigManager.init(String fileName) method can be used for loading
configuration settings by providing the configuration file’s name. The fileName parameter
can be either:

 full path and name of the configuration file in file system or only the file’s name if
it is in a location referenced by CLASSPATH,

 location of the configuration file in a jar container that has been added to
CLASSPATH. For example, the default configuration file jdigidoc.cfg that is
embedded in JDigiDoc -*.jar container (* indicates the version of the library) can
be loaded by setting the fileName parameter to “jar://JDigiDoc.cfg".

 URL value referring to the configuration file’s name and location, for example
“https://svn.eesti.ee/projektid/idkaart_public/trunk/jdigidoc/jdigidoc/src/main/reso
urces/jdigidoc.cfg”.

Note that when calling out the method repeatedly then it only overwrites the configuration
entries that were already present in the configuration file that was used in the first call of
the method. Therefore, it would be more convenient to include all of the needed
configuration settings in the first configuration file and overwrite any additional settings by
loading a smaller file during the program’s working time when necessary.

For example, if you would like to load alternative CA configuration entries with parameter
values that were not present in the initial configuration file then you need to use methods
of ee.sk.digidoc.tsl.DigiDocTrustServiceFactory class to load the values (i.e. re-initialise
the object with DigiDocTrustServiceFactory.init() method):

ConfigManager.instance().getTslFactory().init();

2. ee.sk.utils.ConfigManager.init(Hashtable hProps) method can be used to load
configuration settings from previously initialised java.util.Properties object. The method is
useful, for example, when loading configuration settings form a database or during
working time of a service without the need for restart.

 Configuration parameters

For a sample configuration file provided with JDigiDoc, see Appendix 1.

Below is an overview of the configuration file’s main sections and entries. The following color
notation is used for specific parameter values:

 bold for default values which do not usually need to be changed by the user

 purple for indicating values which should be checked and modified according to user

 # blue for listing possible alternatives, where applicable

Signature processor settings (exchangeable modules)

For replacing one of the standard modules with your implementation, you should place the
module in CLASSPATH and register its class name here

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 23 / 80

Parameter Comments

DIGIDOC_SIGN_IMPL

Module used for signature creation.
ee.sk.digidoc.factory.PKCS11SignatureFactory
(implementation module using smartcards over PKCS#11
driver and IAIK PKCS#11 wrapper library to access
external native language PKCS#11 drivers). Not thread
safe

DIGIDOC_NOTARY_IMPL

Module for notary functions.
ee.sk.digidoc.factory.BouncyCastleNotaryFactory

(implementation module for getting OCSP confirmations
using BouncyCastle library)

DIGIDOC_FACTORY_IMPL
Module for reading and writing DigiDoc documents.
ee.sk.digidoc.factory.SAXDigiDocFactory

(implementation using a SAX parser)

DIGIDOC_TIMESTAMP_IMPL

Module for timestamp functions.
ee.sk.digidoc.factory.BouncyCastleTimestampFactory

(implementation using BouncyCastle library).
Note: Implementation of time-stamp related functionality

is experimental in JDigiDoc.

CANONICALIZATION_FACTORY_IMPL
Module for canonicalization functions.
ee.sk.digidoc.c14n.TinyXMLCanonicalizer
(implementation using Tiny XML Canonicalizer)

DIGIDOC_TSLFAC_IMPL
Module for TSL functions.
ee.sk.digidoc.tsl.DigiDocTrustServiceFactory
(implementation module using a SAX parser)

ENCRYPTED_DATA_PARSER_IMPL
Module for reading and writing small encrypted files.
ee.sk.xmlenc.factory.EncryptedDataSAXParser

(implementation using a SAX parser)

ENCRYPTED_STREAM_PARSER_IMPL
Module for reading and writing large encrypted files.
ee.sk.xmlenc.factory.EncryptedStreamSAXParser

(implementation using a SAX parser)

Security settings

Parameter Description

DIGIDOC_SECURITY_PROVIDER
Security module used for cryptographic algorithms in
Java.
org.bouncycastle.jce.provider.BouncyCastleProvider

DIGIDOC_SECURITY_PROVIDER_NAME
Name for the security provider.
BC

Big file handling

Parameter Description

DIGIDOC_MAX_DATAFILE_CACHED

Maximum number of bytes per DataFile object to be
cached in memory. If object size exceeds the limit then
the data is stored in temporary file. If the parameter’s
value is set to a negative number then temporary files are
not written to disk.
4096 (4 KB)

DIGIDOC_DF_CACHE_DIR
Specifies directory for storing temporary files. Default
value is read from system parameter java.io.tmpdir
 # /tmp

Signature verification settings

Parameter Description

CHECK_OCSP_NONCE
Used only in case of DIGIDOC-XML 1.3 files. Specifies if
the OCSP response’s nonce field’s ASN.1 prefix is
checked during signature creation and verification. By

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 24 / 80

default, the value is set to false in order to support
verification of .ddoc files created with JDigiDoc library’s
version below v3.7. The nonce field’s ASN.1 prefix is
always checked in case of BDOC 2.1 files.
false
true

Note: The ASN.1 prefix specifies the digest algorithm that was used to calculate the nonce
field’s value, the prefix is mandatory according to RFC6960 specification (see also [7]). If the
ASN.1 prefix is checked then it must contain the octet string ASN.1 identificator (0x04 0x14 in
case of DDOC 1.3).

Default digest types for BDOC

According to a study on the use of cryptographic algorithms in state information systems
published by the Estonian Department of State Information Systems in 2011,
(http://www.riso.ee/et/files/kryptoalgoritmide_elutsykli_uuring.pdf, in Estonian), it’s
recommended to support and use hash functions belonging to at least the SHA-2 set – i.e.
SHA-224, SHA-256, SHA-384 or SHA-512 in digital signing protocols.

In case of BDOC 2.1 format, the default hash function to be used for new signatures and other
digests is set in the JDigiDoc configuration file as SHA-256.

Parameter Description

DIGIDOC_DIGEST_TYPE

Specifies the default digest type for all hash
values in the BDOC 2.1 signature file (see
additional notes below for signature value’s
digest)
SHA-256

Additional notes on default digest type usage:

 For the DIGIDOC-XML 1.3 format, SHA-1 will still the default digest type for all
digests and cannot be altered.

 For BDOC 2.1 format, the default digest type is SHA-256 (except of the case which
is described under the next point).

 For the BDOC 2.1 format and in case of Estonian ID cards with certificates issued
before 2011, the SHA-224 digest type will be automatically selected and used for
calculating signature value’s digest (the final digest that is signed); other options are
not being supported there. Note that other digest in the signature (e.g. data file
digests, signer certificate’s digest) are still calculated with SHA-256 (the default
digest type).

Default profile

Profiles are based on the profiles defined by XAdES.

Parameter Description

DIGIDOC_DEFAULT_PROFILE

Specifies the default profile to be used when
creating a new document.
TM - main signature profile to be used, using

time- mark.
BES

Note: for historical reasons, in the current document and in JDigiDoc library, the BDOC 2.1
format’s EPES profile is also referred to as BES.

http://www.riso.ee/et/files/kryptoalgoritmide_elutsykli_uuring.pdf

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 25 / 80

PKCS#11 settings

If using the smart card over PKCS#11 module for creating signatures, then you must specify
the following parameters according to your signature device here:

Parameter Description

DIGIDOC_SIGN_PKCS11_DRIVER

Specifies the PKCS11 driver library used to
communicate with the smart card.
With Estonian ID cards for example, the
following PKCS#11 libraries are used:
opensc-pkcs11.so (used in Linux and OSX
environment)
opensc-pkcs11.dll (used in Windows
environment)

DIGIDOC_SIGN_PKCS11_WRAPPER
A wrapper library which makes PKCS#11
modules available from within Java.
PKCS11Wrapper

log4j configuration file

If you wish to replace the default log4j configuration file with your own or access it from a
different location, please change the following parameter accordingly:

Parameter Description

DIGIDOC_LOG4J_CONFIG
The location of the log4j.properties file
./log4j.properties

OCSP responder settings

This DIGIDOC_OCSP_RESPONDER_URL setting applies to your default OCSP responder
address when no other OCSP responder address for the CA is found in the OCSP responder
data registered in your configuration file entries.

The default address provided (http://ocsp.sk.ee) is for the real-life OCSP Responder service
to be used for Estonian ID cards.

Note: access to the real-life OCSP service (managed by Estonian CA – AS
Sertifitseerimiskeskus, SK) is granted on the basis of contract (http://sk.ee/en/services/validity-
confirmation-services). There are two ways of getting access to the OCSP service:

 accessing the service from specific IP address(es);

 by having an access certificate for accessing the service (i.e. sending OCSP request
which are signed with the access certificate, see also the next section).

For testing purposes, use SK’s test OCSP responder service available at
http://demo.sk.ee/ocsp (previously http://www.openxades.org/cgi-bin/ocsp.cgi). For more
information, please refer to http://www.id.ee/?lang=en&id=35755.

Parameter Description

DIGIDOC_OCSP_RESPONDER_URL
OSPC Responder used if no other address is found for
the CA in the locally registered entries.
http://ocsp.sk.ee

OCSP_TIMEOUT
Connect timeout in milliseconds; 0 means wait forever
30000

http://ocsp.sk.ee/
http://sk.ee/en/services/validity-confirmation-services
http://sk.ee/en/services/validity-confirmation-services
http://demo.sk.ee/ocsp
http://www.openxades.org/cgi-bin/ocsp.cgi
http://www.id.ee/?lang=en&id=35755

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 26 / 80

Settings for signing OCSP requests or not

Whether you need to sign the OCSP requests sent to your OCSP responder or not depends
on your responder.

Some OCSP servers require that the OCSP request is signed. To sign the OCSP request, you
need to obtain and specify the certificates, which will be used for signing.

For example, accessing the SK’s OCSP Responder service by private persons requires the
requests to signed (limited access certificates can be obtained through registering for the
service) whereas in case of companies/services, signing the request is not required if having
a contract with SK and accessing the service from specific IP address(es) (IP-based access).

By default, this parameter value is set to FALSE – i.e. it is assumed that the user has IP-based
access and the OCSP requests don’t need to be signed. If the parameter is set to TRUE then
you will also need to provide your access certificate’s file location, password and serial number
that have been issued to you for this purpose.

Parameter Description

SIGN_OCSP_REQUESTS

Specifies if the OCSP requests will need to be signed or
not
FALSE
TRUE

DIGIDOC_PKCS12_CONTAINER
Specifies your pkcs12 filename, e.g.
./home/132936.p12d

DIGIDOC_PKCS12_ PASSWD Specifies your pkcs12 password, e.g. m15eTGpA

DIGIDOC_ OCSP_SIGN_CERT_SERIAL
Specifies your pkcs12 certificate serial number e.g.
129525

You can use DigiDoc3 Client to find the access certificate’s serial number, if you are using the
same certificate which has been installed there – open “Settings” menu, “Server access
certificate” tab, “Show certificate” button, and find the serial number under “Details” view.

CA certificates

The CA certificates registered in the configuration file will be used when creating and verifying
signatures, in order to check the signer certificate’s and OCSP responder certificate’s trust
hierarchy.

By default, the Estonian CA’s certificates (both live and test certificates) have been registered
in the JDigiDoc configuration file. The live CA and OCSP certificate files have been included
in the JDigiDoc distribution but the test certificate files haven’t. In order to use the test
certificates, you need to copy the certificate files to a location referenced by the CLASSPATH
(the files are accessible from https://installer.id.ee/media/esteidtestcerts.jar).

Note that if placing the certificates to some location referenced by the CLASSPATH, you can
use jar:// to get them (using forward slashes both on your Linux and other environments, e.g.
jar://certs/TEST EECCRCA.crt)

Note: test certificates should not be used in live applications as the JDigiDoc library does not
give notifications to the user in case of test signatures (even though since the library’s version
v3.8, the utility program displays test signature as a warning to the user). In case of live
applications, the test certificates should be removed.

Parameter Description

DIGIDOC_CAS
Number of ‘local’ CAs registered in your configuration
file
1

https://installer.id.ee/media/esteidtestcerts.jar

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 27 / 80

DIGIDOC_CA_1_NAME
…
DIGIDOC_CA_n_NAME

Name of the registered CA’s. The currently registered CA
in JDigiDoc is:
DIGIDOC_CA_1_NAME = AS Sertifitseerimiskeskus
 (The number of entries corresponds to DIGIDOC_CAS)

DIGIDOC_CA_1_TRADENAME
…
DIGIDOC_CA_n_TRADENAME

Trade name for the CA
DIGIDOC_CA_1_TRADENAME = SK
 (The number of entries corresponds to DIGIDOC_CAS)

DIGIDOC_CA_1_CERTS
…
DIGIDOC_CA_n_ CERTS

Number of certificates for the specific CA. Currently, the
following number of certificates is registered per CAs in
JDigiDoc:
DIGIDOC_CA_1_CERTS = 17
 (The number of entries corresponds to DIGIDOC_CAS)

DIGIDOC_CA_1_CERT1
…
DIGIDOC_CA_n_CERTn,

Location of all certificates for each CA
(The number of entries corresponds to each CA’s
DIGIDOC_CA_*_CERTS)
Note: if the certificates’ location has been referenced by

the classpath, then you can enter jar:// for retrieving
them, e.g.
DIGIDOC_CA_1_CERT1 = jar://certs/EID-SK.crt

OCSP responder certificates

When using the CAs registered in your configuration file and OCSP responses in signature
creation and verification, you must provide the following details for each OCSP responder:

Parameter Description

DIGIDOC_CA_1_OCSPS
…
DIGIDOC_CA_n_OCSPS

Number of OCSP responders for the specific CA.
By default, only the OCSP responders for SK have been
registered here, e.g. for SK:
DIGIDOC_CA_1_OCSPS = 19

DIGIDOC_CA_1_OCSP1_CA_CN
…
DIGIDOC_CA_n_OCSP n _CA_CN

Name of the CA for the specific OCSP responder being
entered, e.g.
KLASS3-SK

DIGIDOC_CA_1_OCSP1_CA_CERT
…
DIGIDOC_CA_n_OCSP n _CA_CERT

Location of the CA’s certificate for the specific OCSP
responder being entered, e.g.
jar://certs/KLASS3-SK.crt

DIGIDOC_CA_1_OCSP1_CN
…
DIGIDOC_CA_n_OCSPn_CN

Name of the specific OCSP responder, e.g.
KLASS3-SK OCSP RESPONDER

DIGIDOC_CA_1_OCSP1_CERT
…
DIGIDOC_CA_n_OCSPn_CERT

Location of the OCSP responder’s certificate, e.g.
jar://certs/KLASS3-SK OCSP.crt

DIGIDOC_CA_1_OCSP1_CERT_1
…
DIGIDOC_CA_n_OCSPn_CERT_n

Specifies certificate(s) of the OCSP responder, e.g.
jar://certs/KLASS3-SK OCSP 2006.crt

DIGIDOC_CA_1_OCSP1_URL
…
DIGIDOC_CA_n_OCSPn_URL

Address for the OCSP responder, e.g.
http://ocsp.sk.ee

Registering or removing CAs and OCSP responders

For changing the CAs and certificate settings in JDigiDoc, new ‘local’ CAs, OCSP responders
and certificates can be registered in the configuration file or already existing entries can be
removed.

For example, for adding a new CA, the following parameters should be updated:

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 28 / 80

DIGIDOC_CAS = <add +1 if adding a new CA t o the ones already registered>
ƛ
DIGIDOC_CA_2_NAME = <enter name for a new CA, e.g. TEST2>
DIGIDOC_CA_2_TRADENAME = <enter short name for a new CA, e.g. T2>
DIGIDOC_CA_2_CERTS = <update or enter the number of CA certs, e.g. 3>
DIGIDOC_CA_2_CERT1 = <enter locations for all the CA certs>
DIGIDOC_CA_2_CERT2 = <e.g. jar://certs/CA_2_TESTcert2.crt>
DIGIDOC_CA_2_CERT3 = <e.g. jar://certs/CA_2_TESTcert3.crt>
ƛ
DIGIDOC_CA_2_OCSPS = <update or enter the number of OCSP responders for a CA, e.g. 1>
ƛ
DIGIDOC_CA_2_OCSP1_CA_CN =<enter common name for CA, e.g. TEST2>
DIGIDOC_CA_2_OCSP1_CA_CERT =<enter cert for CA, e.g. jar://certs/CA_2_TESTcert2.crt>
DIGIDOC_CA_2_OCSP1_CN =<enter common name for OCSP responder, e.g. TEST2
RESPONDER>
DIGIDOC_CA_2_OCSP1_CERT =<enter c ert for OCSP responder,
e.g.jar://certs/TEST2Responder.crt>
DIGIDOC_CA_2_OCSP1_URL =<enter URL for OCSP responder, e.g. http://www.testOCSP.ee>

The newly registered CA and OCSP certificate files have to be copied to a location referenced
by the CLASSPATH.

Note: If OCSP confirmations are to be used against certificates issued by any new CAs, then
the necessary conditions set by the CA for accessing its OCSP service must be first met and
the corresponding OCSP responder data then entered in the configuration file.

For removing a CA from the configuration file, all of the related entries should be deleted (both
the CA and OCSP responder certificate data).

For removing only some certificates of a CA or its OCSP responders then delete the related
entries from the configuration file. After removing an OCSP responder, update also the
following parameter’s value:

DIGIDOC_CA_* _OCSPS = <update the number of OCSP responders for the CA >

Log4j configuration file

JDigiDoc uses only a part of Apache XML Security library for XML canonicalization.
Unfortunately this library requires putting references to DTD in one's XML documents and
outputs lots of warnings if it doesn't find such references.

One way of discarding those warnings is to set the main logger in Log4j configuration file very
restrictive and then selectively enable logging only for those components that you wish. For
example:

Sample log4j.properties:

root logger properties
log4j.rootLogger=FATAL, output , logfile

JDigiDoc loggers
log4j.logger.ee.sk. utils.ConfigManager=INFO, output
log4j.logger.ee.sk.xmlenc.EncryptedData=INFO, output
log4j.logger.ee.sk.digidoc.DigiDocException=INFO, output
log4j.logger.ee.sk.digidoc.factory.PKCS11SignatureFactory=INFO, output
log4j.logger.ee.sk.digidoc.factory.SAXDigi DocFactory=INFO, output
log4j.logger.ee.sk.digidoc.factory.DigiDocVerifyFactory=INFO, output
log4j.logger.ee.sk.digidoc.factory.BdocManifestParser=INFO, output
log4j.logger.ee.sk.digidoc.factory.Pkcs12SignatureFactory=INFO, output
log4j.logger.ee.sk.digidoc.factory.BouncyCastleNotaryFactory=INFO, output
log4j.logger.ee.sk.digidoc.tsl.DigiDocTrustServiceFactory=INFO, output

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 29 / 80

log4j.logger.ee.sk.digidoc.factory.BouncyCastleTimestampFactory=INFO, output
log4j.logger.ee.sk.xmlenc.factory. EncryptedDataSAXParser=INFO, output
log4j.logger.ee.sk.xmlenc.factory.EncryptedStreamSAXParser=INFO, output
log4j.logger.ee.sk.utils.ConvertUtils=INFO, output
log4j.logger.ee.sk.digidoc.DataFile=INFO, output
log4j.logger.ee.sk.digidoc.SignedDoc=INFO, outpu t
log4j.logger.ee.sk.digidoc.Reference=INFO, output
log4j.logger.ee.sk.xmlenc.EncryptedKey=INFO, output
log4j.logger.ee.sk.digidoc.Base64Util=INFO, output
log4j.logger.ee.sk.digidoc.tsl.TslParser=INFO, output
log4j.logger.ee.sk.digidoc.factory.DigiDocGenFa ctory=INFO, output
log4j.logger.ee.sk.digidoc.factory.DigiDocServiceFactory=INFO, output
log4j.logger.ee.sk.digidoc.c14n.TinyXMLCanonicalizerHandler_TextStringNormali
zer=INFO, output

#setup output appender
log4j.appender.output =org.apache.log4j.ConsoleAp pender
log4j.appender.output.layout=org.apache.log4j.PatternLayout
log4j.appender.output.layout.ConversionPattern=%d{yyyy - MM- dd HH:mm:ss}
[%c{1},%p] %M; %m%n

#setup logfile appender
log4j.appender.logfile=org.apache.log4j.RollingFileAppender
log4j.appende r.logfile.File=jdigidoc.log
log4j.appender.logfile.MaxFileSize=512KB
log4j.appender.logfile.MaxBackupIndex=3
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d{ISO8601} %5p [%t] %c(%L)
%x - %m%n

Configuring software token usage

Software tokens (PKCS#12 files) can be used for creating technical signatures and decrypting
files.

For using software tokens for decryption, set parameter values in JDigiDoc.cfg configuration
file as follows:

DIGIDOC_SIGN_IMPL = ee.sk.digidoc.factory.Pkcs12SignatureFactory
DIGIDOC_SIGN_IMPL = ee.sk.digidoc.factory.PKCS11SignatureFactory

DIGIDOC_KEYSTORE_FILE = <your - PKCS#12- keystore - file>
DIGIDOC_KEYSTORE_TYPE = PKCS12
DIGIDOC_KEYSTORE_PASSWD = <your - keystor e- password>

For digital signing, there are two configuration possibilities:

1. In order to sign with a software token as described in JDigiDoc utility program’s
command in section “Sample commands of creating technical signatures”, sample
no 1, add the following parameters to the configuration settings shown above.

KEY_USAGE_CHECK = FALSE
DIGIDOC_SIGNATURE_SLOT = 0

2. In order to create signature as described in JDigiDoc utility program’s command in
section “Sample commands of creating technical signatures”, sample no 2, only the
following parameters need to be configured:

DIGIDOC_SIGN_IMPL_PKCS12 = ee.sk.digidoc.factory.Pkcs12SignatureFactory
DIGIDOC_SIGN_IMPL = ee.sk.digi doc.factory.PKCS11SignatureFactory
KEY_USAGE_CHECK = FALSE

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 30 / 80

Note: signatures that are created with software tokens are technical signatures. Verification of
the signatures is expected to produce specific error messages (see also Appendix 2: Signature
types).

5. Using JDigiDoc API

 Digital signing

JDigiDoc library offers creating, signing and verification of digitally signed documents,
according to XAdES (ETSI TS 101 903 [4]) and XML-DSIG [3] standards. In the next chapters
a short introduction is given on the main API calls used to accomplish the above mentioned.

For additional information about the classes and methods described in the following
paragraphs, see the full API description (javadoc) that is included in the JDigiDoc library’s
distribution package.

5.1.1 Initialization

Before you can use JDigiDoc, you must initialize it by reading in configuration data. This is
necessary because the library needs to know the location of CA certificates and other
parameters in order to fulfill your requests. Pass the full path and name of the configuration
file to library like that:

ConfigManager. init ("jar://JDigiDoc.cfg");

The configuration file can be embedded in JDigiDoc jar file which is indicated by the “jar://”
prefix. Otherwise just pass the normal full filename in your platform like “/etc/jdigidoc.cfg”.

See also “4.1 Loading configuration settings” for alternative configuration loading options.

5.1.2 Creating a DigiDoc document

Before you can add payload data to digidoc document you must create a SignedDoc object to
receive this data:

SignedDoc sdoc = new SignedDoc(format, ver sion);
// supported format and version combinations: DIGIDOC- XML 1.3 and BDOC 2.1

The new digidoc object is kept in memory and not immediately written to a file.

Note: the functionality of creating new files in older DigiDoc file formats SK-XML, DIGIDOC-
XML 1.1, DIGIDOC-XML 1.2 and BDOC 1.0 is no longer supported.

Next, set the profile of the document. “TM” profile (using time-marks) is currently the only
supported and tested profile in JDigiDoc. Call out the setProfile() method with the following
input parameter:

sdoc.setProfile(SignedDoc. BDOC_PROFILE_TM);

The profile value that is set for SignedDoc object is later (within the same session) used by
default as a profile for all signatures that are added to the SignedDoc. Available profiles are
described in “3.3 Supported functional properties”.

5.1.3 Adding data files

In order to add a data file to a container, the container has to be unsigned and there shouldn’t
be an existing data file with the same name in the container. Note that only the data file name
without path is saved in the document (‘/’ and ‘\’ characters are not allowed in the data file’s
name).

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 31 / 80

Each data file in the container is assigned with an ID value by the library. In case of DIGIDOC-
XML 1.3 documents, the ID values in the form of “D<seq_no>” (counting from zero) are used
– the respective value is also stored in <DataFile> element’s ID attribute. In case of BDOC 2.1
documents, the data file’s name is used as the ID value, multiple data files with the same name
are not allowed in the container.

NB!

 In case of BDOC 2.1 documents, it is important to pay attention that the data file’s mime
type value in manifest.xml file and in signatures*.xml file’s
<DataObjectFormat><MimeType> element are the same, otherwise the signature is
invalid! In case of the ordinary signature creation process, the library sets the correct
value automatically. However, if you create a BDOC 2.1 container with JDigiDoc library
and want to add signatures*.xml file that you have received from another source (e.g.
from DigiDocService) then make sure that the data files’ mime-type values in manifest-
xml file and in signatures*.xml file are the same.

 Data file’s mime-type value must be formatted as specified in RFC2045, section 5.1
(https://tools.ietf.org/html/rfc2045#section-5.1), i.e. the “type” and “subtype” values must
be separated with a forward slash character.

 By default, it is recommended to use data file mime-type value “application/octet-stream”
for all file types.

 It is recommended not to use special characters in the data file’s name, i.e. it is
suggested to only use the characters that are categorized as “unreserved” according to
RFC3986 (http://tools.ietf.org/html/rfc3986).

5.1.3.1 Adding data file from file system

In case of DIGIDOC-XML 1.3 documents, the data files can be added to DigiDoc container by
embedding the data in base64 encoding (using detached data files or embedding pure text or
XML is not supported).

DataFile df = sdoc.addDataFile(new File((<full - filename - with - path>),
<mime- type >, DataFile. CONTENT_EMBEDDED_BASE64);

The new objects are created in memory but the reference files are not read from the disk yet.
The library reads all files when you write the digidoc document to a file or start adding
signatures (because one has to know the hash codes for signing the data). The data is
converted to base64 format.

In case of BDOC 2.1 documents, the data files are embedded in the container in binary format.
If there is no existing manifest.xml file’s entry for the data file then this too is created. For
adding files to BDOC 2.1 container, do as follows:

 DataFile df = sdoc.addDataFile(new File((<full - f ilename - with - path>),
<mime- type>, DataFile. CONTENT_BINARY);

5.1.3.2 Adding data file from byte array in memory

If you don't want JDigiDoc to read the data files from disk because you hold the data in a
database, generate it dynamically etc., then assign data to the DataFile object from an in-
memory byte array. Once you have assigned the data to this object it will no longer be read
from disk.

1. DataFile.setBody(byte[] data) method for DDOC and BDOC containers.

Note: In case of DIGIDOC-XML 1.3 files, content of the byte array is automatically converted
to base64 by the library, so the input data must not be in base64 format, otherwise double
base64 encoding will be done. If you would like to add data which is already in base64 then

https://tools.ietf.org/html/rfc2045#section-5.1
http://tools.ietf.org/html/rfc3986

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 32 / 80

use method DataFile.setBodyAsData(byte[] data, boolean b64, long len) which is described
under the next point.

For example, in case of DIGIDOC-XML 1.3 documents, do as follows:

DataFile dFile = new DataFile(sdoc.getNewDataFileId() , //gets the next
// datafile index as ID value
DataFile . CONTENT_EMBEDDED_BASE64, // content type for DDOC files
" test .txt" , // data file name
"text/plain" , // mime type
sdoc); // SignedDoc object created earlier

String myBody = "My sample data" ; //e.g. data read from
// database

byte bodyArray [] = myBody.getBytes();
df .setBody(bodyArray); // the data content is added

In case of BDOC 2.1 documents (supported since v3.8.1):

DataFile dFile = new DataFile(" test .txt" , // set the data file name as
// ID value in case of BDOC documents
DataFile. CONTENT_BINARY, // content type for BDOC files
" test .txt" , // data file name
"text/plain" , // mime type
sdoc); // SignedDoc object created earlier

String myBody = "My sample data" ; //e.g. data read from
// database

byte bodyArray [] = myBody.getBytes();
df .setBody(bodyArray); // the data content is added

2. DataFile.setBodyAsData(byte[] data, boolean b64, long len) method for
DDOC files (since v3.8.1) – if the boolean parameter b64 is set to true then the
original data is not converted to base64.

3. DataFile.setBase64Body(byte[] data) method for DDOC files - has the same
functionality as DataFile.setBody(byte[] data). The input data is always converted
to base64 format.

5.1.4 Adding signatures

It is possible to add a signature to a container only if it contains at least one data file, multiple
signatures can be added to a single container. The signer’s certificate and PIN code to access
the private signature key are required during signing.

The SignatureFactory interface is used for signing. You can sign either by:

- using an Estonian ID card or

- any other smartcard or token provided that you have the external native language
PKCS#11 driver for it;

- using a HSM device if you have the external native language PKCS#11 driver for it;

- using a software token (PKCS#12 file);

- calculate the signature in some external program (e.g. web-application) and then
add the signature value to digidoc document.

Note: the functionality of adding signatures and removing existing signatures is restricted in
the following cases:

- in case of older DigiDoc file formats SK-XML, DIGIDOC-XML 1.1, DIGIDOC-XML
1.2 and BDOC 1.0.

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 33 / 80

- in case of BDOC 2.1 files where SHA-1 hash function has been used.

Before signing you have to get the signer’s certificate that is being referenced by the signature.

If you use PKCS#11 driver to access smart card then do:

String pin = "<smartcard - PIN>";

Initialize the SignatureFactory according to configuration file’s parameters.

SignatureFactory sigFac = ConfigManager. instance ().getSignatureFactory();

Get the signing certificate and log in with PIN code:

X509Certificate cert = sigFac.getCertificate(0, pin);

The first parameter of the above mentioned method is the slot number (index of the key pair
used for signing). Note that the slot number denotes the sequence number (counting from
zero) of the signature certificate among all signature certificates on the identity token (i.e. the
value may not correspond to the actual slot ID value in PKCS#11 driver). In this sample we
use 0 as it's used on Estonian ID cards. Please note that when using the default
KEY_USAGE_CHECK configuration setting then this index starts with 0 and counts ONLY the
key pairs usable for digital signature, e.g. no authentication key pairs!

Now compute the data file’s hash codes and create a Signature object:

Signature sig = sdoc.prepareSignature(cert,
 null , // String[] roles - optional, role / resolution of the signer
 null); //SignatureProductionPlace Ɨ ÏÐÔÉÏÎÁÌƗ ÓÉÇÎÅÒƦÓ ÁÄÄÒÅÓÓ

When adding a role or resolution of the signer then at most one entry is allowed in the roles
array (the second parameter of the prepareSignature() method shown above). The entry can
contain only the signer’s role or role along with the signer’s resolution, separated with a slash
character, i.e. “role / resolution”. The value will be written to a single <ClaimedRole> xml
element in the file. When adding the signer’s resolution then role must also be added. Note
that during signature validation, at most two <ClaimedRole elements are allowed due to
historical reasons.

Note: if you have read in an unsigned BDOC container from an input steam and are adding a
signature to it then it is necessary to additionally determine the signature profile before signing
(even if the profile has previously been set for the container). In this case, set the profile as
follows:

sig.setProfile(SignedDoc. BDOC_PROFILE_TM);

The signature is not complete yet as it's missing the actual RSA signature data. We have to
now calculate the final hash value (SHA-1 in case of DIGIDOC-XML 1.3 and by default, SHA-
256 in case of BDOC 2.1) that serves as input for RSA signature:

sidigest = sig.calculateSignedInfoDigest();

In case of PKCS#11 driver, compute RSA signature value as follows (alternatively, you can
use a web browser plugin to get the RSA signature value):

byte [] sigval = sigFac.sign(sig digest , 0, pin , sig);

The second parameter specifies the slot number, as described in method
sigFac.getCertificate(int slot, String pin); above.

Finally, add signature value to the Signature object:

sig.setSigna tureValue(sigval);

Alternatively, if you use HSM device for signing then replace the signature value calculation in
the example above with the following method. Note that support for HSM device in JDigiDoc
is experimental.

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 34 / 80

byte[] PKCS11SignatureFactory.sign(byte[] si digest, //signed info digest
long nSlotId, ƳƳ ÃÅÒÔÉÆÉÃÁÔÅ ÓÌÏÔƦÓ)$ ÖÁÌÕÅ
String certLabel, // label name of the certificate object
String pin, // pin code for accessing the slot
Signature sig) ; // Signature object

Signature certificate on HSM device is determined by its slot ID number and the certificate
object’s label, both of the parameters are mandatory. Note that the slot ID used in the current
method refers to the actual ID value of the slot (not the sequence number of the certificate on
device, as used in other JDigiDoc methods). Also, the signature certificate and private
signature key have to be in the same slot and must have same label values (i.e. the label
values of the certificate and private key objects are used to match the certificate with the
appropriate private key).

5.1.5 Adding an OCSP confirmation

Call the following method to add OCSP confirmation (time-mark):

sig.getConfirmation();

After adding an OCSP confirmation, the signature is now complete and provides long-time
proof of the signed data. Note that at most one OCSP confirmation is allowed for a signature.

OCSP confirmation’s data are stored in element <UnsignedSignatureProperties> in the
DigiDoc file (see also [1], section “XAdES extension block – unsigned parameters”).

5.1.6 Reading and writing digidoc documents

Write a SignedDoc object to a digidoc file as follows:

sdoc.writeToFile(new File(" <full - path - and- filename>"));

If you want to store the digidoc document in database not in a file, then use the method:

SignedDoc.writeToStream(OutptStream os);

To read a DigiDoc document, you can use one of the following methods:

 DigiDocFactory.readSignedDoc(String fileName)

 DigiDocFactory.readSignedDocOfType(String fname, boolean isBdoc, List lerr)

 SAXDigiDocFactory.readSignedDocFromStreamOfType(InputStream is, boolean
isBdoc, List lerr)

For example:

DigiDocFactory digF ac = ConfigManager.instance().getDigiDocFactory();
SignedDoc sdoc = digFac.readSignedDoc("<full - path - and- filename>");

 Validating signed documents

Validation of a signed DigiDoc document consists of three main steps:

1. Read in the DigiDoc document and check for returned parsing errors;

2. Call out the main validation method of the library;

a. Check for fatal errors. End the process with INVALID status if any fatal
errors have been discovered.

3. Check for additional errors/warnings (separate method calls);

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 35 / 80

4. Determine the validation status of the document (according to the returned error
codes and validation status priorities).

Note: steps 1a, 2 and 3 are additions to the validation process since the library’s version v3.8.

5.2.1 Reading and parsing the DigiDoc document

Read in and parse the DigiDoc document. Errors that are discovered during parsing can be
collected to a List by using either of the following methods:

// Reading from disk :
SAXDigiDocFactory .readSignedDocOfType(String fname,

boolean isBdoc,
List lerr) ; // list for collecting parsing errors

// Reading from an input stream :
SAXDigiDocFactory.readSignedDocFromStreamOfType(InputStream is,

boolean isBdoc,
List lerr) ; // list for collecting parsing errors

Note: the XML namespace error “176 ERR_ISSUER_XMLNS”, that is recommended to be
regarded as a warning, is returned during parsing of the container. The error should be caught
and stored for later, in order to determine the final validation status, as described in chap.
5.2.4.1.

After reading in the document, continue with using the main validation method of the library. If
the returned List container contains any exceptions then keep them for determining the
validation status later on.

5.2.2 Using the main validation method

Secondly, validate the whole DigiDoc document as follows (e.g. after having read in a digidoc
document as described in the previous chapter):

ArrayList <Exception> errs = SignedDoc. verify(true ,
true); // 4ÈÅ ÍÅÔÈÏÄƦÓ ÁÒÇÕÍÅÎÔ ÖÁÌÕÅÓ ÁÒÅ ÏÂÓÏÌÅÔÅ ÁÎÄ ÄÏÎƦÔ ÈÁÖÅ
// any actual meaning .

This method validates the document’s structure and if there are no fatal errors, validates all
signatures one by one. If the signature has an OCSP confirmation then this too is being
validated.

If document structure’s validation process discovers fatal errors in the XML structure then
validation is cancelled and the respective exception is returned to the user. If document’s
structure is validated with no fatal errors then the method continues with validating signatures
and OCSP confirmations (OCSP responses added to the document). In case of signature
validation errors, no exceptions are actually thrown, but they are returned to the user in an
ArrayList container. This way you can get all errors and not just the first.

After calling out the main validation method:

 If the returned ArrayList container contains any exceptions then it must be checked if
any of the exceptions were fatal (e.g. the document’s XML structure is broken and it
is not possible to continue the validation process). You can check for fatal errors with
the following method:

SignedDoc.hasFatalErrs(Array List lerrs) ; //returns TRUE if fatal errors
// are found

If the method returns “true” then you must terminate the validation process with status
INVALID. Otherwise, continue with checking for additional errors/warnings described
in the next chapter.

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 36 / 80

 If the returned ArrayList container is empty, continue with checking for additional
errors/warnings described in the next chapter.

5.2.3 Checking for additional errors/warnings

There are validation cases that are not checked in the default validation method of the library,
instead, separate methods for checking the specific situations have to be called out by the
library’s user. In JDigiDoc library, checking for a test signature must be done separately.

The following subchapters describe how these checks can be implemented. After checking for
additional errors/warnings, collect all of the error codes and continue with determining the
validation status as described in the next chapter.

5.2.3.1 Checking for test signature

Test signature is a signature that has been created by using test certificates (e.g. signer’s
certificate and/or OCSP responder server’s certificate have been issued for testing purposes).

1. For identifying if a certificate is a SK issued test certificate, use the following method
with the signer’s certificate as input:

ee.sk.digidoc.factory.DigiDocGenFactory.isTestCard(X509Certificate cert);

The identification is done with comparing certificate policy OID values.

2. It must also be checked separately, if the OCSP responder was issued by SK’s test
service:

ee.sk.digidoc.factory.DigiDocVerifyFactory.verifySignatureFromLiveAndOcspFr
omTest(Signature sig, List lerrs)

5.2.4 Determining the validation status

After validating the signed DigiDoc document, the validation result must be determined by the
library’s user. Final validation result must be one of the possible validation statuses that are
described in the table below, the status must be chosen according to its priority.

The validation status priorities have to be applied in two cases:

1. Returning a validation result of a single signature:

If there are more than one validation errors that occur when validating a single

signature in DigiDoc container then the overall status of the signature should be

chosen according to the status priorities.

2. Returning a validation result of the whole DigiDoc container:

If there are more than one signatures in a DigiDoc container and the signatures have

different validation statuses or validation of the container structure returns a different

status then the overall status of the DigiDoc file should be chosen according to the

status priorities.

NB! User of the library has to determine the validation status according to the error

code that is returned by the library’s validation method.

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 37 / 80

Priority Status Error code Description

1
INDETERMINA
TE/UNKNOWN

92

ERR_CERT_UN
KNOWN

39

ERR_SIGNERS_
CERT

Validation process determines that one or more of
the certificates included in the document are
unknown or not trusted, i.e. the certificates have been
issued by an unknown Certificate Authority (the CA
has not been added to trusted list).

Notes:

 The file and signature(s) are not legally valid.

 If the CA will later be added to the trusted
list/trust store then the validation status can
change to any of the other statuses described in
the current table.

Suggested warning message (also displayed in

DigiDoc3 Client): “Signature status is displayed as
unknown if you don’t have all validity confirmation
service certificates and/or certificate authority
certificates installed into your computer”

More info: http://www.id.ee/index.php?id=35941

 Sample file: unknown_CA.asice

2 INVALID

All errors except
of the ones that
are regarded as
warnings by the
library’s user.

Validation process returns error(s), the errors have
not been explicitly determined as minor error(s) by
the library’s user.

Note:

 The file and signature(s) are not legally valid.

 No further alterations should be made to the file,
i.e. no signatures should be added or removed.

3 TEST

178

ERR_TEST_SIG
NATURE

Test certificates have been used in the signed file
(e.g. signer’s certificate and/or OCSP responder
server’s certificate have been issued in testing
purposes).

Notes:

 Test signature is not legally binding even if the
signature is valid.

 This status is used in combination with the other
validation statuses described in the current
table.

Suggested warning message (also displayed in

DigiDoc3 Client): “Test signature”

More info: http://www.id.ee/index.php?id=30494

Sample file: test_signature.ddoc

http://www.id.ee/index.php?id=35941
http://www.id.ee/index.php?id=30494

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 38 / 80

Priority Status Error code Description

4
VALID WITH
WARNINGS

See the next
section.

Validation process returns error(s) that have been
previously explicitly categorized (by the library’s
user) as minor technical errors. Note that this status
is used only in exceptional cases, more details of
which are given in the next chapter.

Notes:

 The file and signature(s) are handled as legally
valid.

 The error(s) are regarded as validation
warnings.

 Validation warnings should be displayed to the
user.

 No further alterations should be made to the file,
i.e. no signatures should be added or removed.

 Creator of the file should be informed about the
error situation.

5 VALID N/A
Validation process returns no errors. The signature is
legally valid.

The error codes described in the table above are defined in ee.sk.digidoc.DigiDocException
class.

Sample code of DigiDoc file validation can be found from ee.sk.test.jdigidoc class, from the
following method:

runValidateSignedDocCmds(String[] args) ; ƳƳÕÔÉÌÉÔÙ ÐÒÏÇÒÁÍƦÓ ÃÏÍÍÁÎÄ - ddoc- validate

5.2.4.1 Validation status VALID WITH WARNINGS

In special cases, validation errors can be regarded as minor technical errors and the file’s
validation status can be regarded as VALID WITH WARNINGS instead.

NB! User of the DigiDoc library has to decide on his/her own when to use VALID WITH
WARNINGS status instead of INVALID: there may be different interpretations of the severity
of validation errors in different information systems then the final decision when to use this
status has to be made by the library’s user according to the requirements of the specific
information system.

It is recommended to use the validation status VALID WITH WARNINGS in case of the error
situations that are included in the table below - these error situations are regarded as VALID
WITH WARNINGS in DigiDoc applications and software libraries, including:

 DigiDoc3 Client desktop application,

 JDigiDoc, Libdigidocpp and CDigiDoc software libraries’ utility programs.

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 39 / 80

Table 1. Validation error codes recommended to be handled as VALID WITH WARNINGS

Status Error code
Related
DigiDoc

file format
Description

VALID WITH
WARNINGS

129

WARN_WEAK_DI
GEST

BDOC
2.1

Weaker digest method (SHA-1) has been used
than recommended when calculating either
<Reference> or <Signature> element’s digest
value.

Suggested warning message (also displayed

in DigiDoc3 Client): “The current BDOC
container uses weaker encryption method than
officially accepted in Estonia.”

Sample file: weak-warning-sha1.bdoc

173

ERR_DF_INV_HA
SH_GOOD_ALT_H
ASH

DDOC
1.0

DDOC
1.1

DDOC
1.2

DDOC
1.3

<DataFile> element’s xmlns attribute is
missing.

Suggested warning message (also displayed

in DigiDoc3 Client): “This DigiDoc documents
has not been created according to
specification, but the digital signatures is
legally valid. You are not allowed to add or
remove signatures to this container.”

More info: http://www.id.ee/?id=36213

Sample file: datafile_xmlns_missing.ddoc

176

ERR_ISSUER_XM
LNS

DDOC
1.1

DDOC
1.2

DDOC
1.3

<IssuerSerial><X509IssuerName> and/or
<IssuerSerial><X509SerialNumber> element’s
xmlns attribute is missing.

Suggested warning message (also displayed

in DigiDoc3 Client): “This DigiDoc documents
has not been created according to
specification, but the digital signatures is
legally valid. You are not allowed to add or
remove signatures to this container.”

More info: http://www.id.ee/?id=36213

Sample file: issuerserial_xmlns_missing.ddoc

177

ERR_OLD_VER

DDOC
1.0

DDOC
1.1

DDOC
1.2

BDOC
1.0

DigiDoc file’s version is older than currently
supported. Note that the error situation affects
only the container and not the signatures,
therefore, in DigiDoc libraries, it is returned
and displayed only at container level.

Suggested warning message (also displayed

in DigiDoc3 Client): “The current file is a
DigiDoc container that is not supported
officially any longer. You are not allowed to
add or remove signatures to this container”

More info:

http://www.id.ee/index.php?id=36161 (DDOC)

http://www.id.ee/?id=36161 (BDOC 1.0)

Sample file: old_digidoc_format_1.0.ddoc

Sample file: old_bdoc_format_1.0.bdoc

http://www.id.ee/?id=36213
http://www.id.ee/?id=36213
http://www.id.ee/index.php?id=36161
http://www.id.ee/?id=36161

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 40 / 80

Sample code for determining validation warnings can be found from jdigidoc.java utility
program (ee.sk.test.jdigidoc). See command –ddoc-validate
(ee.sk.test.jdigidoc.runValidateSignedDocCmds(String[] args)) and method
ee.sk.test.jdigidoc.isWarning().

5.2.5 Additional information about validation

5.2.5.1 Validating documentôs structure separately

For validating the XML structure of a digidoc document, JDigiDoc classes contain methods
that validate the contents of XML fields and attributes.

It is always useful to validate a digidoc document after reading it from a file or after adding or
changing some content. This helps to identify problems at later phases. Note that this method
is also called out by the library’s main validation method SignedDoc.verify(boolean, boolean).

XML structure can be validated with the method:

ArrayList SignedDoc.validate(true);

This method returns an array of DigiDocException objects. If the array is empty then the
document’s structure is ok.

5.2.5.1 Validating signatures separately

It is possible to validate only one signature object separately from the rest of the document
with a single method call (since the library’s version v3.8). It can be useful to distinguish a
single signature's validation errors from the rest of the DigiDoc document’s validation result.

Use the following method to validate the Signature object’s XML structure and cryptographic
value:

ArrayList Signature . verify(SignedDoc sdoc, ArrayList lerrs) ;

5.2.5.2 Overview of validation activities

Overview of validation activities is as follows:

1. checking that all the data files and signature’s meta-data (signer’s role, etc.) are
included in the signature by calculating the data objects’ digest values and
comparing them with the <Reference> element values in the signature;

2. checking that the claimed signer’s certificate is the actual certificate that was used
for signing; checking that the “Non-repudiaton” value is set in the “Key Usage”
extension of the signer’s certificate;

3. checking that the signature value is correct by decrypting the value with the signer’s
public key and comparing the result with digest calculated from <SignedInfo>
element block;

4. checking that the OCSP response confirms the signer certificate’s validity and
corresponds to the signature value (by comparing the digest value of
<SignatureValue> element’s value and OCSP response’s nonce value);

5. checking that the signer’s and OCSP responder’s certificates are trusted (i.e. the
certificates’ issuers are registered in trust store, i.e. the configuration file).

Note that verifying a DDOC signature that has no OCSP confirmation produces an error
message “Error: 128 - Signature has no OCSP confirmation!”. If the signature that is being
verified was created with a software token (PKCS#12 file) then error message “Error 39: Signer’s

cert does not have non-repudiation bit-set!” is produced.

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 41 / 80

 Encryption and decryption

5.3.1 Format of the encrypted file

In addition to digital signing, JDigiDoc library offers also digital encryption and decryption
according to the ENCDOC-XML 1.0 (based on XML-ENC) standard. This standard describes
encrypting and decrypting XML documents or parts of them and it also allows encrypting any
binary data in Base64 encoding.

The ENCDOC-XML 1.0 encrypted file format (also referred to as CDOC 1.0) has been
described in [12]. The format uses .cdoc as encrypted file extension.

Data is encrypted with a 128 bit AES transport key which is in turn encrypted with the
recipient’s certificate. Encryption scheme is therefore certificate-based – it is possible to
encrypt data using public key component fetched from some certificate. The decryption can
be performed only by using private key corresponding to that certificate.

Many encrypted data objects or a mix of encrypted and unencrypted data in one XML
document is not supported.

One encrypted document:

 contains only one <EncryptedData> element, which is also the document’s root
element

 contains one <EncryptedKey> element for every recipient (i.e. possible decrypter) of
the document

 contains a set of <EncryptionProperty> elements to store any meta data.

If it is needed to incorporate multiple data files into one encrypted document then it is possible
to pack the files to a single container and then encrypt the container.

5.3.2 Encryption

In the following chapters we review most common encryption operations with JDigiDoc library.

The process to compose an encrypted document is as follows:

1. create the EncryptedData object first,

2. add all recipients’ certificates and other data,

3. add encryption properties,

4. add the unencrypted data and encrypt it,

5. finally store it in a file or other medium.

5.3.2.1 Creating EncryptedData object

EncryptedData cdoc = new EncryptedData(
 null, // optional Id attribute value
 null, // optional Type attribute value
 null, // optional Mime Type attribute value
 EncryptedData. DENC_XMLNS_XMLENC, // fixed xml namespace
 EncryptedData. DENC_ENC_METHOD_AES128); // fixed cryptographic
algorithm

Optional attribute values have to be passed in as nulls in case you don't need them. Passing
in for example an empty string will case this to be considered a valid attribute value. More
information about the attribute values can be found from [12].

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 42 / 80

The “MimeType” attribute of <EncryptedData> element reflects the mime type of the original
data that is encrypted. The default value „application/octet-stream“ can be used, except in the
following cases (for compatibility with DigiDoc3 Crypto application):

1. If encrypting a BDOC 2.1 document, then the “MimeType” attribute should be set as:

" application/vnd.etsi.asic - e+zip "

which has also been defined as constant: SignedDoc.MIMET_FILE_CONTENT_20

2. If encrypting a DIGIDOC-XML 1.3 document (and also when using a temporary
DDOC container for encapsulating the original files to be encrypted2), you should
assign the “MimeType” attribute following value:

" http://www.sk.ee/DigiDoc/v1.3.0/digidoc.xsd "

which has also been defined as a constant: EncryptedData.DENC_ENCDATA_TYPE_DDOC

Note: the attribute “MimeType” was also historically used to store the fact that the data has
been packed with ZLIB algorithm before encryption. As compressing data during encryption is
deprecated since v3.9 of the library then this case should not be used any longer. If
compression has been used nevertheless, then the library automatically assigns the following
value to “MimeType” attribute:

" http://www.isi.edu/in - noes/iana/assignments/media - types/application/zip "

If the “MimeType” attribute was already set by the library’s user then the original “MimeType”
value is stored in an <EncryptionProperty Name=”OriginalMimeType”> subelement. If
JDigiDoc reads a document with this specific “MimeType” then it decompresses the decrypted
data and restores the original mime type if one is found.

5.3.2.2 Adding recipient info

Every encrypted document should have at least one recipient block, otherwise nobody can
decrypt it.

It is possible to encrypt for multiple certificates at once. Certificates for encryption are fetched
from a file in the file system (DER and PEM encoding are supported), possible sources for
finding them can be:

 Windows Certificate Store (“Other Persons”)

 LDAP directories (for Estonian ID card holders, all valid certificates are available at:
ldap://ldap.sk.ee, see also https://www.sk.ee/en/repository/ldap/).

 ID-card in smart-card reader.

Note that in JDigiDoc library, the certificates that can be used for encryption must have the
value “Key Encipherment” included in “Key Usage” attribute field. In case of Estonian ID cards
and Digi-ID it's the authentication certificate. The recipient’s certificate must be in PEM format.

NB! Encryption should be done for the authentication certificates on all the recipient’s valid
identity tokens, i.e. if the recipient has a valid ID-card and Digi-ID card then encryption should

2 When using temporary intermediary DDOC container then the data file(s) to be encrypted are
placed inside an unsigned DDOC container (DIGIDOC-XML 1.3). The whole DDOC container is then
encrypted. The unsigned DDOC container should be discarded when decryption is done, e.g. as it is
done by DigiDoc3 Client, so that the user gets original data file(s) as a result.

NOTE: it is recommended to use direct encryption without temporary DDOC containers as much as
possible. Direct encryption/decryption is supported in all of the DigiDoc libraries with CDOC support
and in DigiDoc3 Crypto versions 3.9 and above.

http://www.sk.ee/DigiDoc/v1.3.0/digidoc.xsd
http://www.isi.edu/in-noes/iana/assignments/media-types/application/zip
ldap://ldap.sk.ee/
https://www.sk.ee/en/repository/ldap/

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 43 / 80

be done for the certificates on both of the tokens. Mobile-ID authentication certificate should
not be used for encryption as decryption with Mobile-ID is not possible.

For example, the following process can be used to select the appropriate certificate(s) to be
used for encryption:

1. Check that the certificate’s “KeyUsage” field includes “KeyEncipherment” value

2. Check that the certificate is not a Mobile-ID certificate by inspecting the certificate
policy value in “CertificatePolicies” field. In case of a Mobile-ID certificate, the
certificate policy identifier value is a string starting with “1.3.6.1.4.1.10015.1.3.” or
“1.3.6.1.4.1.10015.11.1.”.

For every recipient the library creates a <EncryptedKey> element and stores the following data
within that element:

 the AES transport key encrypted with the recipients certificate

 the recipient’s certificate itself

 possibly some other data used to identify the key.

EncryptedKey object with the recipient’s data can be added as follows:

X509Certificate recvCert = SignedDoc.readCertificate(new File(certFile));
EncryptedKey ekey = new EncryptedKey(
 null, // optional Id attribute value
 null, // optional Recipient attribute value
 EncryptedData. DENC_ENC_METHOD_RSA1_5, // fixed cryptoalgorithm
 null, // optional K eyName subelement value
 null, // optio nal CarriedKeyName subelement value
 recvCert); // recipients certificate. Required!
cdoc.addEncryptedKey(ekey);

Optional attributes “Id”, “Recipient” and/or subelements <KeyName> and <CarriedKeyName>
can be added to identify the key object. All of the above mentioned attributes and subelements
are optional but can be used to search for the right recipient’s key or display its data in an
application.

The command line utility program jdigidocutil-*.jar assigns a unique value to every
EncryptedKey objects “Recipient” attribute. It could be the recipients forename or something
more complicated like “<last-name>,<first-name>,<personal-code>”. This can later be used as
a command line option to identify the recipient whose key and smart card is used to decrypt
the data.

As the recipient’s certificate is the only required data, it would be wise not to demand encrypted
documents to contain other attributes for an application’s proper functioning. Something from
the certificate like its CN attribute should be used to identify the recipient.

5.3.2.3 Setting the encryption properties

The encrypted CDOC document can contain a number of <EncryptionProperty> elements that
can be used to store various meta-data. The JDigiDoc library automatically sets the
“LibraryVersion” and “DocumentFormat” properties, other properties are optional.

If you are using temporary intermediary DDOC container for encapsulating the original files to
be encrypted then the original files need to be placed inside an unsigned DDOC container
(DIGIDOC-XML 1.3) and then encrypted (and the Mimetype value set accordingly, see chap.
5.3.2.1). In this case, the encryption property “orig_file” must be specified.

Note: it is recommended to use direct encryption without temporary DDOC containers as much
as possible. Direct encryption/decryption is supported in all of the DigiDoc libraries with CDOC
support and in DigiDoc3 Crypto versions 3.9 and above.

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 44 / 80

The “orig_file” properties must be defined as follows. There must be one “orig_file” property
for every data file (<DataFile> element) in the DDOC container, each property must be in the
following format:

<file - name>|<size - in - bytes>|<mime - type>|<DataFile - ID- in - DDOC>

For example:

// Create DDOC intermediate file
SignedDoc sdoc = new SignedDo c(SignedDoc. FORMAT_DIGIDOC_XML, SignedDoc. VERSION_1_3);

// Add the unencrypted data file to DDOC container
File fIn = new File(inFile);
byte[] data = Signed Doc.readFile(fIn);
DataFile df = sdoc.addDataFile(fIn, " <mime- type> " ,

DataFile. CONTENT_EMBEDDED_BASE64);
df.setBase64Body(data);

// Add the DDOC data to CDOC container
byte[] inData = sdoc.toXML().getBytes("UTF - 8");
cdoc.setData(inData);
cdoc.setDataStatus(EncryptedData. DENC_DATA_STATUS_UNENCRYPTED_AND_NOT_COMPRESSED);

cdoc.setMimeType(EncryptedData. DENC_ENCDATA_TYPE_DDOC); // ensure that the MimeType

// attribute is set accordingly

// Create orig _file property
StringBuffer sb = new StringBuffer();
sb.append(fIn.getName());
sb.append("|");
sb.append(new Long(fIn.length()).toString());
sb.append("|");
sb.append(df.getMimeType());
sb.append("|");
sb.append(df.getId());
cdoc.addProperty(EncryptedData. ENCPROP_ORIG_FILE, sb.toString()); // add to cdoc

// Continue with encryption...

5.3.2.4 Encryption and data storage

There are two possible methods for encrypting data, depending on the size of the data object
that is being encrypted. In both cases it isn’t necessary to use files to store encrypted data. It
can be can written to any output stream and used as required.

Note: since v3.9 of the library, functionality of compressing the data during encryption is
deprecated. By default, the library never compresses data during encryption (by using the
EncryptedData.DENC_COMPRESS_NEVER option). Historically, the
EncryptedData.DENC_COMPRESS_ALLWAYS option was used to always compress the
input data and EncryptedData.DENC_COMPRESS_BEST_EFFORT option enabled to use
compression only if it resulted in reduction of the input data size.

Encrypting small data objects

In case of small data objects, it is possible to do all operations in memory. The method is faster
and more flexible but requires more memory.

For example:

// R ead unencrypted data
byte[] inData = SignedDoc.readFile(new File(inFile));
cdoc.setData(inData);

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 45 / 80

cdoc.setDataStatus(EncryptedData. DENC_DATA_STATUS_UNENCRYPTED_AND_NOT_COMPRESSED);

// Encryption
cdoc.encrypt(EncryptedData. DENC_COMPRESS_NEVER);

FileOutputStream fos = new FileOutputStream(outFile);
fos .write(m_cdoc.toXML());
fos .close();

Encrypting big data objects

Encryption of big data objects is done by reading and handling all data in blocks of fixed size.
The method is capable of encrypting large sets of data but less flexible. It doesn't offer the
option of encrypting in memory, so input and output streams must be provided. Note that the
functionality of encrypting big data sets is not currently tested.

cdoc.encryptStream(new FileInputStream(inFile),
 new FileOutputStream(outFile), EncryptedData. DENC_COMPRESS_NEVER);

5.3.3 Parsing and decryption

Note: when decrypting files then it should be taken into account sometimes the data file that
has been encrypted is placed inside a temporary DDOC container before encryption. In
this case, it is also necessary to extract the original data file(s) from DigiDoc container after
decryption. It is possible to detect if a temporary DDOC container has been used in the
following way:

 <EncryptedData> element’s “Mimetype“ attribute value is
„http://www.sk.ee/DigiDoc/v1.3.0/digidoc.xsd“.

 There are one or more EncryptionProperty Name="orig_file"> elements in the
following format: <file-name>|<size-in-bytes>|<mime-type>|<DataFile-ID-in-DDOC>

 After decryption, an unsigned DDOC file is received as a result.

 In other cases, it can be assumed that the data has been encrypted directly, without
the temporary DDOC container.

There are two methods available for decrypting and parsing encrypted documents.

1. EncryptedDataParser – suitable for parsing smaller encrypted objects.

After parsing, data is in memory and can be decrypted or displayed on screen. It does not
automatically decrypt data during parsing. Decryption is a separate operation.

Parsing small encrypted files is done as follows:

EncryptedDataParser dencFac = ConfigManager.instance().
 getEncryptedDataParser();
cdoc = dencFac.readEncryptedData(inFile);

Now all data is in memory in encrypted and possibly in compressed form.

The methods of EncryptedData, EncryptedKey and EncryptionProperty objects can be
used to display and decrypt data as follows:

cdoc.decrypt(0, // index of EncryptedKey object
 0, // smartcards Token index. For Estonian ID cards always 0
 pin); // smartcards PIN code. For Estonian ID card PIN1
FileOutputStream fos = new FileOutputStream(outFile);
fos .write(cdoc.getData());

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 46 / 80

fos .close();

2. EncryptedStreamParser – suitable for parsing and decrypting large encrypted objects.

Doesn't keep any data in memory, input and output streams have to be provided.
Decryption and decompression is done during parsing. Note that the functionality of
decrypting big data sets is not currently tested.

For decrypting big encrypted documents, you firstly need to set up the input and output
streams:

// provide input and o utput streams
FileInputStream fis = new FileInputStream(inFile);
FileOutputStream fos = new FileOutputStream(outFile);
EncryptedStreamParser streamParser = ConfigManager.
 instance() .getEncryptedStreamParser();

Next, call one of the following decryption methods. The methods read the data from input
stream, decrypt, possibly decompress it and write it to output stream.

o Method decryptStreamUsingRecipientName() – the EncryptedKey object is
identified with the “Recipient” attribute. Only the PKCS#11 token type is
supported.

streamParser.decryptStreamUsingRecipientName(fis , fos ,
 0, // smartcard Ʀs t oken index. For Estonian ID cards always 0
 pin, // smartcard Ʀs PIN code. PIN1 f or Estonian ID card s
 recvName); // selected EncryptedKey object Ʀs Recipient attribute

o Method decryptStreamUsingTokenType() – allows you to choose the
appropriate token type for decryption (PKCS#11 and PKCS#12 tokens are
supported).

In case of PKCS#11, do as follows:

streamParser.decryptStreamUsingT okenType(fis , fos ,
 0, // PKCS11 token index. For Estonian ID cards always 0
 pin, // PIN code to decrypt with PKCS11 . PIN1 f or Estonian ID card s
 SignatureFactory. SIGFAC_TYPE_PKCS11, // token type : PKCS11 or PKCS12
 null); // PKCS12 keystore filename and path if PKCS12 is used .
 // Set the value to null in case of PKCS11

o If you use HSM device for decryption then call method:

EncryptedS treamParser.decryptStreamUsingRecipientSlotIdAndTokenLabel(
InputStream dencStream, // input stream
OutputStream outs, // output stream
int slot, // slot ID of the decryption certificate
String label, // label name of the certificate object
String pin) ; // pin code to access the certi ÆÉÃÁÔÅƦÓ ÓÌÏÔ

Decryption certificate on HSM device is determined by its slot ID number and the
certificate object’s label, both of the parameters are mandatory. Note that the slot ID
used in the current method refers to the actual ID value of the slot (not the sequence
number of the certificate on device, as used in other JDigiDoc methods). Also, the
decryption certificate and accompanying private key have to be in the same slot and
must have same label values (i.e. the label values of the certificate and private key
objects are used to match the certificate with the appropriate private key).

Finally, close the input and output streams:

fos .close();
fis .close();

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 47 / 80

6. JDigiDoc utility program

The command line utility program which is included in the JDigiDoc distribution as an
executable JAR archive file jdigidocutil-*.jar can be used to test the library to encrypt, decrypt
and digitally sign documents (‘*’ in the file name denotes the version number of the JDigiDoc
library).

Note: the utility program is intended for testing and presentation of sample implementation of
the library’s API. The interface of the utility program is not fixed and its stability is not
guaranteed.

7 Using the command line utility program with Windows Command Prompt

 The general format for executing the program is:

> java Ƶjar jdigidocutil - * .jar [commands]

A list of all the available commands and their format can always be displayed by using the -?
or –help commands:

> java Ƶjar jdigidocutil - * .jar - help

The jdigidocutil-*.jar JAR archive contains a metadata file META-INF/MANIFEST.MF which
specifies the necessary meta-information for executing the JDigiDoc utility program. For
example, the MANIFEST.MF file specifies the main Java class of the program
(ee.sk.test.jdigidoc) and defines all of the necessary classpath variables.

Note: classpath values for using Estonian CA’s test certificates and Lithuanian CA’s
certificates have also been pre-defined in the manifest file – /esteidtestcerts.jar and
/lib/esteidtestcerts.jar for Estonian CA’s test certificates; /jdcerts.jar and /lib/jdcerts.jar for
supported Lithuanian CA’s certificates. For more information on using the mentioned
certificates, see sections 5.1.2 Trusted Estonian certificate authorities, under “Supported SK
test certificate hierarchy chains” and section 5.1.4 Trusted Lithuanian certificate authorities.

 General commands

Note: the utility program commands’ parameters that are marked between “<” and “>”
characters are mandatory and have to be specified. The parameters between “[“ and “]”
characters are optional.

- -? or –help – displays help about command syntax

- -config <configuration-file> - specifies the JDigiDoc configuration file name.

- -check-cert <certificate-file-in-pem-format> - checks the certificate validity status

Setting the configuration file

-config <configuration-file>

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 48 / 80

You can dynamically specify the configuration file used before executing each command
line task.

If left unspecified, then the default configuration file is looked up from locations included
in the classpath: “jar://jdigidoc.cfg”.

Checking the certificate

-check-cert <certificate-file-in-pem-format>

Used for doing a preliminary check of the chosen certificate’s validity; returns an OCSP
response from the certificate’s CA OCSP responder.

Returns the certificate’s validity information:

o GOOD – certificate is valid

o REVOKED – certificate has been revoked

o UNKNOWN – certificate has never been issued or issuer is unknown

o EXPIRED – certificate has been expired

o SUSPENDED – certificate has been suspended

o OCSP_UNAUTHORIZED – if no access to OCSP validity confirmation
service

Sample: setting the configuration file when creating a new DigiDoc container

> java Ƶjar jdigidocutil - * .jar Ƶconfig c: \ temp\ jdigidoc.cfg - ddoc- new - ddoc-
add c: \ temp\ test1.txt text/plain - ddoc- out c: \ temp\ test1.ddoc

 Input:
 - c: \ temp\ jdigidoc.cfg Ƶ the configuration file to be used
 - c: \ temp\ test 1.txt - a data file to be added to ddoc container
 - text/plain - mime type of the data file
 - c: \ temp\ t est1.ddoc - ddoc container to be created

 Digital signature commands

Note: the utility program commands’ parameters that are marked between “<” and “>”
characters are mandatory and have to be specified. The parameters between “[“ and “]”
characters are optional.

o -ddoc-in <input-digidoc-file> - reads in a DigiDoc file

o -ddoc-in-stream <input-digidoc-file> - reads in a DigiDoc file from inputstream.
Used for testing API’s inputstream functions.

o -ddoc-in-ostream <input-digidoc-file> - reads in a DigiDoc file from
java.io.ObjectInputStream and deserializes it as a SignedDoc object. Note that the
command is currently not being tested.

o -ddoc-new [format] [version] – creates a new DigiDoc container

o -ddoc-add <input-file> <mime-type> [content-type] – adds a data file to a
DigiDoc container

o -ddoc-add-mem <input-file> <mime-type> [content-type] – adds a data file to a
DigiDoc container by internally using an in-memory byte array for keeping the data
file’s content.

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 49 / 80

o -ddoc-sign <pin-code> [role/resolution] [country] [state] [city] [zip] [slot]
[profile] [driver] [keystoreFile] – signs a DigiDoc file

o -ddoc-out <output-file> - creates a DigiDoc file at the specified location

o -ddoc-out-stream <output-file> - writes the DigiDoc file to an outputstream. Used
for testing API’s outputstream functions.

o -ddoc-out-ostream <output-file> - serializes the SignedDoc object and writes it to
a DigiDoc file by using java.io.ObjectOutputStream. Note that the command is
currently not being tested.

o -ddoc-validate - displays a DigiDoc file’s content info and validates signature(s).
Note that starting from the library’s 3.8 version, warnings system is used, i.e. minor
technical errors are printed out as warnings. See chapter “5.2.4.1 Validation status
VALID WITH WARNINGS” for detailed information about warning situations.

Parameter –libraryerrors can be added to the command to distinguish errors that are
returned by the library.

o -libraryerrors – for testing purposes, may be used together with –ddoc-validate
command. Enables to view the validation errors as they are returned by the library
(otherwise, the utility program may transform specific errors to warnings; see also
description under -ddoc-validate command). The errors are printed out with
“LIBRARY-ERROR” prefix.

o -ddoc-extract <data-file-id> <output-file> - extracts DigiDoc file’s content

o -ddoc-rm-sig <signature-id> - for testing purposes. Enables to remove a signature
from DigiDoc container.

o -ddoc-rm-df <data-file-id> - for testing purposes. Enables to remove a data file
from a DigiDoc container. Note that it is possible to remove data file only from an
unsigned container.

o -ddoc-list-keys - experimental functionality. The command lists the tokens available
on the device. Used for determining token’s slot and label in case of signing or
decrypting with HSM device (see also commands “-ddoc-sign-slot-label” and “-cdoc-
decrypt-stream-slot-label”)

o -ddoc-sign-slot-label <slot-id> <label> <pin-code> [role/resolution] [country]
[state] [city] [zip] [slot] [profile] - experimental functionality. The command can be
used when signing with a HSM device. The signature certificate on HSM device is
determined by its slot ID number and the certificate object’s label, both of the
parameters are mandatory. The available tokens, their slots and labels can be found
with command -ddoc-list-keys. Note: slot ID used in the current command refers to
the actual ID value of the slot (not the sequence number of the certificate on device,
as used in other JDigiDoc methods). Also, the signature certificate and private
signature key have to be in the same slot and must have same label values (i.e. the
label values of the certificate and private key objects are used to match the
certificate with the appropriate private key).

o –ddoc-calc-sign <cert-file> [role/resolution] [country] [state] [city] [zip]]
[profile] – for testing purposes or as a source of sample code. The command
enables to calculate the hash to be signed, the actual signature calculation can then
be made in an external system, e.g. with browser plug-in or by using DigiDocService
web service. The signer’s certificate (in PEM format) must be provided as input
parameter.

o –ddoc-add-sign-value <sign-val-file> <sign-id> - for testing purposes or as a
source of sample code. Enables to add a signature value (e.g. calculated externally
via browser plug-in or DigiDocService web service) to a DigiDoc document.

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 50 / 80

6.2.1 Creating new DigiDoc files and signing

-ddoc-new [format] [version]

Creates a new digidoc container in the specified format and version. The current default
format is DIGIDOC-XML, version 1.3. Alternative supported file format is BDOC, version
2.1.

Note: creating new DigiDoc files in older DigiDoc file formats SK-XML, DIGIDOC-XML
1.1, DIGIDOC-XML 1.2 and BDOC 1.0 is not supported.

-ddoc-add <input-file> <mime-type> [content-type]

Adds a new data file to a digidoc document. If digidoc container doesn't exist then
creates one in the default format (DIGIDOC-XML 1.3). Data file can be added only to a
container that is unsigned and doesn’t contain an existing data file with the same name.

Input file (required) specifies the name of the original file, (it is recommended to include
full path in this parameter; the path is removed when writing to DigiDoc container file, ‘/’
and ‘\’ characters are not allowed in the data file’s name).

Mime type (required) represents the MIME type of the original data file like “text/plain”
or "application/msword”.

NB!

 Data file’s mime-type value must be formatted as specified in RFC2045, section
5.1 (https://tools.ietf.org/html/rfc2045#section-5.1), i.e. the “type” and “subtype”
values must be separated with a forward slash character.

 By default, it is recommended to use data file mime-type value
“application/octet-stream” for all file types.

 It is recommended not to use special characters in the data file’s name, i.e. it is
suggested to only use the characters that are categorized as “unreserved”
according to RFC3986 (http://tools.ietf.org/html/rfc3986).

Content type applies when using the DIGIDOC-XML format and reflects how the
original files are embedded in the container: EMBEDDED_BASE64 (embedding binary
data in base64 format) is supported and used by default.

-ddoc-add-mem <input-file> <mime-type> [content-type]

Analogous to -ddoc-add command but the data file’s data is kept in a byte array in
memory before adding it to the SignedDoc container.

-ddoc-sign <pin-code> [role/resolution] [country] [state] [city] [zip] [slot] [profile]
[driver] [keystoreFile]

Adds a digital signature to the digidoc document. Note that adding signatures to DigiDoc
files in older formats SK-XML, DIGIDOC-XML 1.1, DIGIDOC-XML 1.2 and BDOC 1.0 is
no longer supported.

You can use the command with the following parameters:

pin code Required.

In case of Estonian ID cards, pin code2 is used for digital signing.

role/resolution Role of the signer / resolution of the signer – as a single string, separated
with a slash character. It is also possible to specify only the signer’s role.
At most one role/resolution value is allowed for a signature.

country Country of origin. ISO 3166-type 2-character country codes are used (e.g.
EE)

state State or province where the signature is created

https://tools.ietf.org/html/rfc2045#section-5.1
http://tools.ietf.org/html/rfc3986

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 51 / 80

city City where the signature is created

zip Postal code of the place where the signature is created

slot Identifier of the signer’s signature certificate’s and the accompanying
private key’s sequence number (counting from zero) among all signature
certificates on an identity token.

When operating for example with a single Estonian ID card (which contains
one signature key) then the key can be found in slot 0 – which is used by
default.

The library makes some assumptions about pkcs11 drivers and card
layouts:

 - you have on card signature and/or authentication keys

 - both key and certificate are in one slot

 - if you have many keys like 1 signature and 1 authentication key then
they are in different slots

- you can sign with signature key that has a corresponding certificate with
"NonRepudiation" bit set.

You may need to specify a different slot to be used when for example
operating with multiple smart cards on the same system. In this case, the
signature slots are counted as follows:

- slot 0 – signature key of the 1st smartcard

- slot 1 – signature key of the 2nd smartcard

If the slot needs to be specified during signing, then the 5 previous optional
parameters (manifest, country, state, city, zip) should also be filled first
(either with the appropriate data or as “ “ for no value).

profile Signature profile identifier.

Used when adding a technical signature to a ddoc container. Technical
signature is a signature with no OCSP confirmation and no timestamp
value (analogous to bdoc “BES” profile).

When creating a technical signature then the values of parameters “slot”
and “profile” should be set to 0 and “BES” accordingly.

driver Specifies the driver type that is used for signature creation (optional).

Possible alternatives are:

- PKCS11 – driver for singing with smart card, used by default.

- PKCS12 – used when creating a technical signature with software
token (PKCS#12 file).

If signing with a software token (PKCS#12 file), then the appropriate
changes must first be made in the configuration file (see section 3.5,
subsection “Configuring software token usage”).

keystoreFile Specifies software token’s PKCS#12 container’s name. Used in case of
signing with software token (i.e. the “driver” parameter of the current
command has been set to “PKCS12”).

-ddoc-out <output-file>

Stores the newly created or modified digidoc document in a file.

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 52 / 80

Sample commands for creating and signing DigiDoc files:

Sample: creating new DigiDoc file without signing , with default format and
version (DIGIDOC - XML, version 1.3)

> java Ƶjar jdigidocutil - * .jar - ddoc- new - ddoc- add c: \ temp\ test1.txt
text/plain - ddoc- out c: \ temp\ test1.ddoc

 Input:
 - c: \ temp\ test 1.txt - a data file to be added to container
 - text/plain - mime type of the data file
 - c: \ temp\ test1.ddoc - container to be created

Sample: creating new DigiDoc file with signing , with BDOC format and default
profile (BDOC_PROFILE_TM)

> java Ƶjar jdigidocutil - * .jar - ddoc- new BDOC - ddoc- add c: \ temp\ test1.txt
text/plain Ƶddoc- sign 12345 - ddoc- out c: \ temp\ test1.bdoc

Input:
 - BDOC - ÓÐÅÃÉÆÉÅÓ ÔÈÅ ÄÉÇÉÔÁÌÌÙ ÓÉÇÎÅÄ ÆÉÌÅƦÓ ÆÏÒÍÁÔ

- c: \ temp\ test 1.txt - a data file to be added to container
 - text/plain - mime type of the data file
 - 12345 - id - card pin2
 - c: \ temp\ test1.bdoc - container to be created

Sample: Signing an existing DigiDoc container (adding signatures)
> java Ƶjar jdigidocutil - * .jar - ddoc- in c: \ temp\ test1.ddoc Ƶddoc- sign 67890
Ƶddoc- out c: \ temp\ test1.ddoc

Input:
 - c: \ temp\ test 1.ddoc - container to be signed
 - 67890 - id - card pin2
 - c: \ temp\ test 1.ddoc - output (modified) digidoc container

Sample: Adding multiple data files to an existing unsigned DigiDoc container
> java Ƶjar jdigidocutil - * .jar - ddoc- in c: \ temp\ test1.ddoc - ddoc- add
C:\ temp\ test3.txt text/plain - ddoc- add C: \ temp\ test4.txt text/plain Ƶddoc-
out c: \ temp\ test1.ddoc

Input:
 - c: \ temp\ test 1.ddoc - unsigned conta iner to be read and modified
 - C:\ temp\ test 3.txt - first data file to be added
 - C:\ temp\ test 4.txt - second data file to be added
 - text/plain - mime type of the data file s
 - c: \ temp\ test 1.ddoc - output(modified) digidoc container

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 53 / 80

Sample commands of creating technical signatures

Technical signature is a signature with no OCSP confirmation or a signature created with
software token (PKCS#12 file). Note that verifying a signature that has no OCSP confirmation
is expected to produce error message “Signature has no OCSP confirmation!”. If the signature
that is being verified was created with a software token (PKCS#12 file) then error message
“Signer’s cert does not have non-repudiation bit-set!” is produced.

Sample 1: signing an existing digidoc container with a technical signature ,
signature driver is defined in configuration file
> java Ƶjar jdigidocutil - * .jar - ddoc- in c: \ temp\ test1.ddoc Ƶddoc- sign 67890
Ƨƨ Ƨƨ Ƨƨ Ƨƨ Ƨƨ Ƨƨ 0 Ƨ"%3ƨ Ƶddoc- out c: \ temp\ test1.ddoc

Input:
 - c: \ temp\ test 1.ddoc - unsi gned container to be read and modified
 - 67890 - PIN
 - Ƨƨ - empty strings for optional parameter values (role,
resolution , country, state, city, zip)
 - 0 - signature slot
 - Ƨ"%3ƨ - profile identifier of a technical signature
 - c: \ temp\ test 1.ddoc - output (modified) digidoc container

Sample 2: creating a new DigiDoc file, adding a data file and signing with
technical signature , using software token (PKCS#12 file)

> java Ƶjar jdigidocutil - * .jar - ddoc- new - ddoc- add c: \ temp\ test.txt
text/plain Ƶddoc- sign 67 890 Ƨƨ Ƨƨ Ƨƨ Ƨƨ Ƨƨ Ƨƨ ʣ Ƨ"%3ƨ 0+#3ʦʧ
c: \ test \ pkcs12.pfx Ƶddoc- out c: \ temp\ request1.ddoc

Input:
- c: \ temp\ test.txt - file to be added to container
- text/plain - mime type of the file
- 67890 - password of software token ƦÓ 0+#3ʢʦʧ ÃÏÎÔÁÉÎÅÒ
- Ƨƨ - empty strings for optional parameter values (role,

resolution , country, state, city, zip)
- 0 - signature slot
- Ƨ"%3ƨ - profile identifier of a technical signature
- PKCS12 - identifier of PKCS12 module
- c: \ test \ pkcs12.pfx - ÙÏÕÒ ÓÏÆÔ×ÁÒÅ ÔÏËÅÎƦÓ 0+#3ʢʦʧ ÃÏÎÔÁÉÎÅÒ ÆÉÌÅ
- c: \ temp\ request 1.ddoc - output digidoc container to be created

6.2.2 Reading DigiDoc files and verifying signatures

-ddoc-in <input-digidoc-file>

Specifies the input DigiDoc file name. It is recommended to pass the full path to the
DigiDoc file in this parameter.

-ddoc-validate

Displays a DigiDoc file’s content info and validates signature(s). Note that starting from
the library’s 3.8 version, warnings system is used, i.e. minor technical errors are
printed out as warnings. See chapter “5.2.4.1 Validation status VALID WITH
WARNINGS” for detailed information about warning situations.

Parameter –libraryerrors can be added to the command to distinguish errors that are
returned by the library.

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 54 / 80

Returns:

o List of all data files, in format

 DataFile <file identifier> (e.g. D0, D1…) file: <file name> (e.g. test1.txt) mime: <mime
type> (e.g. text/plain) size: <file size in bytes> (e.g. 8)

o Returns signature verification results (if existing):

"Signature: S0 profile: <signature profile> - <signer’s personal code, last name, first
name> --> OK” or “ --> ERROR“

o Signature validation warning (if present), in format:

WARNING: <error-code> - <warning message>

For example: WARNING: 178 - Test signature!

-ddoc-extract <data-file-id> <output-file>

Extracts the selected data file from the DigiDoc container and stores it in a file. Data file
id represents the ID for data file to be extracted from inside the DigiDoc container.

Output file represents the name of the output file.

Sample commands for reading/validating/extracting from DigiDoc files:

Sample: validating existing DigiDoc file, signed
> java Ƶjar jdigidocutil - * .jar - ddoc- in c: \ Temp\ test2.ddoc - ddoc- validate

Input:
- C:\ temp\ test 2.ddoc Ƶ the digidoc file to be validated
Returns:
 DataFile: D0 file: test2.txt mime: text/plain size: 8
 Signature: S0 profile: TM
 Signature: S0 profile: TM - -?..)+,MARI- LIIS,4110914 0240 -- > OK

Sample: Extracting a data file from an existing DigiDoc file
> java Ƶjar jdigidocutil - * .jar - ddoc- in c: \ temp\ test1.ddoc - ddoc- extract D1
c: \ temp\ test_ext.txt

Input:
- c: \ temp\ test 1.ddoc Ƶ the digidoc file to be extracted from
- D1 - the data file ID to be extracted
- c: \ temp\ test_ext.txt - file for storing the extracted data

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 55 / 80

 Encryption commands

Note: the utility program commands’ parameters that are marked between “<” and “>”
characters are mandatory and have to be specified. The parameters between “[“ and “]”
characters are optional.

 -cdoc-in <input-encrypted-file> - specifies the input encrypted document name

 -cdoc-list - displays the encrypted document data and recipients info

 -cdoc-validate – validates the encrypted document

 -cdoc-test <input-file> - tests whether input file is in valid DigiDoc format before
encrypting it (checks for correct start and end tags). Note that the commands
functionality is not tested periodically.

 -cdoc-recipient <certificate-file> - adds recipient to an encrypted document

 -cdoc-encrypt-sk <input-file> <output-file> - encrypts the input document;
recommended for compatibility with other DigiDoc3 Crypto v3.8 and earlier, places
the data file to be encrypted inside a new DigiDoc container. Alternatives are:

o -cdoc-encrypt <input-file> <output-file> - used for encrypting small files, not
recommended for compatibility with other DigiDoc software components

o -cdoc-encrypt-stream <input-file> <output-file>- used for encrypting large
files, not recommended for compatibility with other DigiDoc software
components

 -cdoc-decrypt-sk <pin> <output-file> - decrypts the input file; recommended for
compatibility with DigiDoc3 Crypto v3.8 and earlier, expects the encrypted input file
to be in a DigiDoc container. Alternatives are:

o -cdoc-decrypt <pin> <output-file> - used for decrypting small files in any
original format

o -cdoc-decrypt-stream <input-file> <pin> <output-file> - used for decrypting
large files in any original format

o ïcdoc-decrypt-stream-recv <input-file> <pin> <output-file> <recipient> -
used for decrypting large files in any original format, uses the recipient name
to locate the correct EncyptedKey element and the corresponding transport
key to decrypt with. Note that the command is currently not being tested.

o -cdoc-decrypt-pkcs12-sk <keystore-file> <keystore-passwd> <keystore-
type> <output-file> - decrypts document using pkcs12 sofware token,
recommended for compatibility with other DigiDoc software components,
expects the encrypted input file to be in a DigiDoc container.

o -cdoc-decrypt-pkcs12 <keystore-file> <keystore-passwd> <keystore-
type> <output-file> - decrypts document using pkcs12 software token,
used for decrypting small files in any original format

o ïcdoc-decrypt-pkcs12-stream-sk <input-file> <keystore-file> <keystore-
passwd> <keystore-type> <output-file> - used for decrypting large
documents with pkcs12 software token. Recommended for compatibility with
other DigiDoc software components, expects the encrypted file to be in
DigiDoc format. Note that the command is currently not being tested.

o ïcdoc-decrypt-pkcs12-stream <input-file> <keystore-file> <keystore-
passwd> <keystore-type> <output-file> - decrypts document by using a
pkcs12 software token, used for decrypting large files in any original format.
Note that the command is currently not being tested.

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 56 / 80

 -ddoc-list-keys - experimental functionality. Lists the tokens available on the device.
Used for determining token’s slot and label in case of signing or decrypting with
HSM device (see also commands “-ddoc-sign-slot-label” and “-cdoc-decrypt-stream-
slot-label”)

 -cdoc-decrypt-stream-slot-label <input-file> <pin> <output-file> <slot> <label> -
experimental functionality. Can be used for decrypting data with HSM device.
Decryption certificate on HSM device is determined by its slot ID number and the
certificate object’s label, both of the parameters are mandatory. Note that the slot ID
used in the current method refers to the actual ID value of the slot (not the sequence
number of the certificate on device, as used in other JDigiDoc methods). Also, the
decryption certificate and accompanying private key have to be in the same slot and
must have same label values (i.e. the label values of the certificate and private key
objects are used to match the certificate with the appropriate private key).

6.3.1 Reading encrypted files

-cdoc-in <input-encrypted-file>

Specifies the input encrypted document name.

Input encrypted file (required) specifies the encrypted file.

-cdoc-list

Displays the encrypted data and recipient’s info of an encrypted document just read in.

Sampleƙ $ÉÓÐÌÁÙÉÎÇ ÅÎÃÒÙÐÔÅÄ ÆÉÌÅƦÓ ÒÅÃÉÐÉÅÎÔ ÉÎÆÏ ÁÎÄ ÄÁÔÁ
> java Ƶjar jdigidocutil - * .jar - cdoc- in c: \ Temp\ test1b.cdoc - cdoc- list

Input:

 - c: \ temp\ test 1b.cdoc Ƶ the encrypted file to be read

Returns:
 Encrypted document :
 EncryptedData type : http://www.isi.edu/innoes/iana/assignments/media -
 types/application/zip mime: http://www.isi.edu/in -
 noes/iana/assignments/m edia - types/application/zip
 algorithm : http://www.w3.org/2001/04/xmlenc#aes128 - cbc
 FORMAT: ENCDOC- XML VER: 1.0
 LIBRARY: JDigiDoc VER: 2.7.0.30
 EncryptedKey Id : ID1 Recipient : -?..)+
 algorithm : http://www.w3.org/2001/04/xmlenc#rsa - 1_5
 CERT: SERIALNUMBER=41109140240, GIVENNAME=MARI- LIIS ,
 SURNAME=-?..)+, CN=" -?..)+, MARI- LIIS ,411091402 40",
 OU=authentication, O=ESTEID, C=EE
 EncryptionProperties
 Encrypt ionProperty Name: LibraryVersion -- >JDigiDoc|2.7.0.30
 EncryptionProperty Name: DocumentFormat -- > ENCDOC- XML|1.0
 EncryptionPro perty Name: Filename -- > c: \ temp\ test1b.ddoc
 EncryptionProperty Name: OriginalSize -- > 470

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 57 / 80

6.3.2 Encrypting files

-cdoc-test <input file>

Tests whether the input file is a valid digidoc document or not. It can be used to check
the validity of the document before encrypting it.

Input file (required) specifies the original data file to be encrypted.

Returns:

 Good ddoc: <file name> - if the file is in valid DIGIDOC-XML format

 Invalid ddoc: <file name> - bad file begin – if the file does not start with ’<?xml>’
and ’<SignedDoc>’ tags

 Invalid ddoc: <file name> - bad file end – if the file does not end with
’</SignedDoc>’ tag

-cdoc-recipient <certificate-file> [recipient] [KeyName] [CarriedKeyName]

Adds a new recipient certificate and other metadata to an encrypted document.
Certificate file (required) specifies the file from which the public key component is
fetched for encrypting the data. The decryption can be performed only by using private
key corresponding to that certificate.

Note: encryption should be done for the authentication certificates on all the recipient’s
valid identity tokens (e.g. the national ID-card and Digi-ID card used in Estonia), except
of the Mobile-ID certificates. The input certificate files for encryption must come from
the file system (DER and PEM encodings are supported). Possible sources where the
certificate files can be obtained from include:

 Windows Certificate Store (“Other Persons”)

 LDAP directories

 ID-card in smart-card reader

For example the certificate files for Estonian ID card owners’ can be retrieved from a
LDAP directory at ldap://ldap.sk.ee. The query can be made in following format through
the web browser (IE): ldap://ldap.sk.ee:389/c=EE??sub?(serialNumber= xxxxxxxxxxx)
where serial Number is the recipient’s personal identification number,
e,g.38307240240)

Other parameters include:

recipient If left unspecified, then the program assigns a unique value to this
attribute’s value.

This is later used as a command line option to identify the recipient whose
key and smart card is used to decrypt the data.

Note:

Although this parameter is optional, it is recommended to pass on the
entire CN value from the recipient’s certificate as the recipient identifier
here, especially when dealing with multiple recipients or using the –cdoc-
decrypt-stream later on for decryption.

For example if CN = MÄNNIK,MARI-LIIS,41110212444, then recipient =
MÄNNIK,MARI-LIIS,41110212444

Otherwise, if left unspecified, then only the first part of the recipient’s
certificate’s CN value is used (e.g. if CN = MÄNNIK,MARI-
LIIS,41110212444, then recipient = MÄNNIK).

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 58 / 80

KeyName subelement <KeyName> can be added to better identify the key object.
Optional, but can be used to search for the right recipient’s key or display
its data in an application.

CarriedKeyName subelement <CarriedKeyName> can be added to better identify the key
object. Optional, but can be used to search for the right recipient’s key or
display its data in an application.

-cdoc-encrypt-sk <input-file> <output-file>

Encrypts the data from the given input file and writes the completed encrypted document
in a file. Recommended for providing cross-usability with other DigiDoc software
components.

This command places the data file to be encrypted in a new DigiDoc container.
Therefore handling such encrypted documents later with other DigiDoc applications is
fully supported (e.g. DigiDoc3 client).

Input file (required) specifies the original data file to be encrypted.

Output file (required) specifies the name of the output file which will be created in the
current encrypted document format (ENCDOC-XML ver 1.0), with file extension .cdoc.

Note: There are also alternative encryption commands which are however not
recommended for providing cross-usability with other DigiDoc software
components:

-cdoc-encrypt <input-file> <output-file>

Encrypts the data from the given input file and writes the completed encrypted
document in a file. Should be used only for encrypting small documents, already
in DIGIDOC-XML format.

If using this command for encrypting documents not in DIGIDOC-XML format,
then the receiver must also use the same JDigiDoc utility program for
opening/decrypting it, as cross-usability with other DigiDoc applications in this
case is not supported.

Input file (required) specifies the original data file to be encrypted.

Output file (required) specifies the name of the output file which will be created
in the current encrypted document format (ENCDOC-XML ver 1.0), with file
extension .cdoc.

-cdoc-encrypt-stream <input-file> <output-file>

Encrypts the input file and writes to output file. Should be used only for encrypting
large documents, already in DIGIDOC-XML format. Note that the command is
not currently tested.

Input file (required) specifies the original data file to be encrypted.

Output file (required) specifies the name of the output file which will be created
in the current encrypted document format (ENCDOC-XML ver 1.0), with file
extension .cdoc.

If using this command for encrypting documents not in DIGIDOC-XML format,
then the receiver must also use the same JDigiDoc utility program for
opening/decrypting it, as cross-usability with other DigiDoc applications in this
case is not supported.

Command line samples for encrypting documents:

Sample: encrypting small doc (DigiDoc compatible, original in any format)

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 59 / 80

> java Ƶjar jdigidocutil - * .jar - cdoc- recipient c: \ temp\ Rcert.cer
-?..)+Ɨ-!2)- LIIS,41110212444 - cdoc- encrypt - sk c: \ temp\ test_Small .txt
c: \ Temp\ test1.cdoc

Input:
- c: \ temp\ Rcert.cer Ƶ ÔÈÅ ÒÅÃÉÐÉÅÎÔƦÓ ÃÅÒÔÉÆÉÃÁÔÅ ÆÉÌÅ
- -?..)+Ɨ-!2)- LIIS,41110212444 - ÔÈÅ ÒÅÃÉÐÉÅÎÔƦÓ)$ ƽˮ ÃÅÒÔÉÆÉÃÁÔÅƦÓ #.ƾ
- c: \ temp\ test_Small .txt Ƶ the input file to be encrypted
- c: \ temp\ test 1.cdoc - the encrypted file to be created

Sample : encrypting small doc (not DigiDoc compatible, unless origin al doc
already in DIGIDOC - XML format)
> java Ƶjar jdigidocutil - * .jar - cdoc- recipient c: \ temp\ Rcert.cer - cdoc-
encrypt c: \ temp\ test_Small .ddoc c: \ Temp\ test1.cdoc

Input:
- c: \ temp\ Rcert.cer Ƶ the rec ÉÐÉÅÎÔƦÓ ÃÅÒÔÉÆÉÃÁÔÅ ÆÉÌÅ
- c: \ temp\ test_Small .ddoc Ƶ the input file to be encrypted
- c: \ temp\ test 1.cdoc - the encrypted file to be created

Sample : encrypting large doc (not DigiDoc compatible, unless original doc
already in DIGIDOC - XML format)
> java Ƶjar jdigidocutil - * .jar - cdoc- recipient c: \ temp\ Rcert.cer - cdoc-
encrypt - stream c: \ temp\ test_Large.ddoc c: \ Temp\ test1.cdoc

Input:
- c: \ temp\ Rcert.cer Ƶ ÔÈÅ ÒÅÃÉÐÉÅÎÔƦÓ ÃÅÒÔÉÆÉÃÁÔÅ ÆÉÌÅ
- c: \ temp\ test_Large.ddoc Ƶ the input file to be encrypted
- c: \ temp\ test 1.cdoc - the encrypted file to be created

Sample: testing original document format validity
> java Ƶjar jdigidocutil - * .jar Ƶcdoc- test c: \ Temp\ test1.ddoc

Input:
- c: \ temp\ test 1.ddoc Ƶ the digidoc container to be checked
Returns:
 Good ddoc: C : \ temp\ test1.ddoc

Sample: small doc, for multiple recipients
> java Ƶjar jdigidocutil - * .jar - cdoc- recipient c: \ temp\ R1cert.cer - cdoc-
recipient c: \ temp\ R2cert.cer - cdoc- encrypt - sk c: \ temp\ test1.txt
c: \ Temp\ test2.cdoc

I nput:
- C:\ temp\ R1cert.cer Ƶ the 1s Ô ÒÅÃÉÐÉÅÎÔƦÓ ÃÅÒÔÉÆÉÃÁÔÅ ÆÉÌÅ
- C:\ temp\ R2cert.cer Ƶ ÔÈÅ ʧÎÄ ÒÅÃÉÐÉÅÎÔƦÓ ÃÅÒÔÉÆÉÃÁÔÅ ÆÉÌÅ
- C:\ temp\ test 1.txt Ƶ the input file to be encrypted
- C:\ temp\ test 1.cdoc - the encrypted file to be created

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 60 / 80

6.3.3 Decrypting files

-cdoc-decrypt-sk <pin> <output-file> [slot(0)]

Decrypts and possibly decompresses the encrypted file just read in and writes to output
file. Expects the encrypted file to be inside a DigiDoc container.

Pin (required) represents the recipient’s pin1 (in context of Estonian ID cards).

Output file (required) specifies the output file name.

Slot (optional) specifies sequence number (counting from zero) of the recipient’s
decryption certificate and accompanying private key on the identity token. Slot 0 is used
by default. Note that the sequence number used in the current command may not be
the same as the actual slot’s ID.

Note: There are also alternative commands for decryption, depending on the encrypted
file’s format, size and the certificate type used for decrypting it.

-cdoc-decrypt <pin> <output-file> [slot(0)]

Offers same functionality as -cdoc-decrypt-sk, should be used for decrypting
small files (which do not need to be inside a DigiDoc container).

Pin (required) represents the recipient’s pin1 (in contexts of Estonian ID cards).

Output file (required) specifies the output file name.

Slot (optional) specifies sequence number (counting from zero) of the recipient’s
decryption certificate and accompanying private key on the identity token. Slot 0
is used by default. Note that the sequence number used in the current command
may not be the same as the actual slot’s ID.

-cdoc-decrypt-stream <input-file> <pin> <output-file>

Offers same functionality as -cdoc-decrypt for decrypting documents, should be
used for decrypting large files (which do not need to be inside a DigiDoc
container). Note that the command is not currently tested.

Input file (required) specifies the original data file to be decrypted.

Pin (required) represents the recipient’s pin1 (in contexts of Estonian ID cards).

Output file (required) specifies the output file name.

-cdoc-decrypt-pkcs12-sk <keystore-file> <keystore-passwd> <keystore-type>
<output-file>

Offers same functionality as -cdoc-decrypt for decrypting documents, but using
software tokens (PKCS#12 files). Expects the encrypted file to be inside a
DigiDoc container.

The following parameters are used with this decryption command:

<keystore-file> Required. The path to the PKCS#12 file

<keystore-
passwd>

Required. The password of the PKCS#12 file

<keystore-
type>

Required. PKCS12

<output-file> Required. The path and name of the encrypted output file

-cdoc-decrypt-pkcs12 <keystore-file> <keystore-passwd> <keystore-type>
<output-file>

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 61 / 80

Offers same functionality as -cdoc-decrypt for decrypting documents, but using
software tokens (PKCS#12 files). The encrypted file does not have to be inside
a DigiDoc container.

The following parameters are used with this decryption command:

<keystore-file> Required. The path to the PKCS#12 file

<keystore-
passwd>

Required. The password of the PKCS#12 file

<keystore-
type>

Required. PKCS12

<output-file> Required. The path and name of the encrypted output file

Command line samples for decrypting documents:

Sample: decrypting small encrypted file, inside a DigiDoc container
> java Ƶjar jdigidocutil - * .jar - cdoc- in c: \ Temp\ test1_small.cdoc - cdoc-
decrypt - sk 1234 c: \ Temp\ test1_d.ddoc

Input:
 - c: \ Temp\ test 1_small.cdoc Ƶ the encrypted file to be decrypted
 - 1234 Ƶ the recipients pin1
 - C:\ temp\ test 1_d.ddoc - the decrypted file to be created

Sample: decrypting small encrypted file, in any original format
> ja va Ƶjar jdigidocutil - * .jar - cdoc- in c : \ Temp\ test1 _small .cdoc - cdoc-
decrypt 1234 c: \ Temp\ test1_d.ddoc

Input:
 - c: \ Temp\ test1 _small .cdoc Ƶ the encrypted file to be decrypted
 - 1234 Ƶ the recipients pin1
 - C:\ temp\ test1_d.ddoc - the decrypted file to be created

Sample: decrypting large encrypted file , in any original format
 > java Ƶjar jdigidocutil - * .jar - cdoc- decrypt - stream
c: \ Temp\ test1_large.cdoc 1234 c: \ Temp\ test1_d.ddoc

Input:
 - c: \ Temp\ test 1_large.cdoc Ƶ the encrypted file to be decrypted
 - 1234 Ƶ the recipients pin1
 - c: \ temp\ test 1_d.ddoc - the decrypted file to be created

Sample: decrypting, using PKCS#12 software token , in any original format
 > java Ƶjar jdigidocutil - * .jar - cdoc- in c: \ Temp\ test1_small.cdoc - cdoc-
decrypt - pkcs12 c: \ Temp\ 334836.p12d 12345pW PKCS12 c: \ Temp\ test1_d.ddoc

Input:
 - c: \ Temp\ test 1_small.cdoc Ƶ the encrypted file to be decrypted
 - c: \ Temp\ 334836.p 12d - the PKCS#12 file
 - 12345pW - ÔÈÅ 0+#3ʢʦʧ ÆÉÌÅƦÓ ÐÁÓÓ×ÏÒÄ
 - c: \ temp\ test 1_d.ddoc - the decrypted file to be created

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 62 / 80

7. National and cross-border support

 National PKI solutions and support

7.1.1 Supported Estonian Identity tokens

Currently, JDigiDoc library is tested with the following Estonian ID tokens:

Token Type Description Supported JDigiDoc functionality

EstEID 3.5
and 1.0

Certificate–based
PKI smart cards

Different Estonian ID
card versions

All JDigiDoc functionalities
(authentication, signing, verification,
encryption/decryption)

Digi-ID

(since 2010)

Certificate–based
PKI smart card

Estonian Digital ID card
for use only in
electronic environments

All JDigiDoc functionalities

Aladdin
eToken Pro

Certificate–based
PKI USB
authenticator

Carrier for ID
certificates issued to
organizations.

Note: Supported and tested using

the TempelPlus™ software, which is
based on the JDigiDoc library.

7.1.2 Trusted Estonian Certificate Authorities

AS Sertifitseerimiskeskus (SK, http://sk.ee/en) functions as CA for all the Estonian ID
tokens, maintains the electronic infrastructure necessary for issuing and using the ID cards,
and develops the associated services and software.

SK issues the certificates and acts as Trusted Service Provider (TSP) for validation of
authentication requests and digital signatures. SK maintains the following electronic services
for checking certificate validity including:

 OCSP validation service (an RFC2560-compliant OCSP server, operating directly
off the CA master certificate database and providing validity confirmations to
certificates and signatures). There are two ways of getting access to the service:

o having a contract with SK and accessing the service from a specific IP
address(es) – as practiced by companies/services

o by having certificate for accessing the service and sending signed requests -
as used by private persons for giving digital signatures; registering for the
service is required and service is limited to 10 signatures per month

 CRL-s (mainly for backward compatibility)

 LDAP directory service (containing all valid certificates)

7.1.2.1 Supported SK live certificate hierarchy chains

Note: no additional actions are needed for using the following CA and OCSP responder
certificates with JDigiDoc - these certificate files have been:

 included in the JDigiDoc distribution

 registered in the JDigiDoc configuration file.

Certificate Common Name (CN) Valid to Description

JUUR-SK 26-Aug-2016 SK’s 1st root certificate

 ESTEID-SK 13-Jan-2012 for ID cards issued until
2007

http://sk.ee/en

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 63 / 80

Certificate Common Name (CN) Valid to Description

 ESTEID-SK OCSP
RESPONDER

24-Mar-2005 ESTEID-SK OCSP
Responder

 ESTEID-SK OCSP
RESPONDER 2005

12-Jan- 2012 ESTEID-SK OCSP
Responder

 ESTEID-SK
2007

 26-Aug-2016 for ID cards, Digi-ID and
Mobile-IDs issued until
06.2011

 ESTEID-SK 2007
OCSP
RESPONDER

08-Jan-2010 ESTEID-SK 2007 OCSP
Responder

 ESTEID-SK 2007
OCSP
RESPONDER 2010

26-Aug-2016 ESTEID-SK 2007 OCSP
Responder

 EID-SK 08-May-2014 for all other personal
certificates issued until
01.2007

 EID-SK 2007 OCSP
RESPONDER

15-May-2007 EID-SK OCSP Responder

 EID-SK 2007 26-Aug-2016 for Estonian Mobile-IDs
issued until 02.2011 and
Lithuanian Mobile IDs
issued until 06.2011

 EID-SK 2007 OCSP
RESPONDER

17-Apr- 2010 EID-SK 2007 OCSP
Responder

 EID-SK 2007 OCSP
RESPONDER 2010

26-Aug- 2010 EID-SK 2007 OCSP
Responder

 KLASS3-SK 05-May-2012 for organizational
certificates issued until
10.2010

 KLASS3-SK OCSP
RESPONDER

05-Apr- 2006 KLASS3-SK OCSP
Responder

 KLASS3-SK OCSP
2006 RESPONDER

27-Mar-2009 KLASS3-SK OCSP
Responder

 KLASS3-SK OCSP
2009 RESPONDER

04-May- 2012 KLASS3-SK OCSP
Responder

 KLASS3-SK
2010

 26-Aug-2016 for organizational
certificates issued from
10.2010

 KLASS3-SK 2010
OCSP
RESPONDER

26-Aug- 2016 KLASS3-SK 2010 OCSP
Responder

EECCRCA 18-Dec- 2030 SK’s 2nd root certificate

 ESTEID-SK
2011

 18-Mar- 2024 for ID cards, Digi-ID and
Mobile-IDs issued from
06.2011

 ESTEID-SK
2015

 18-Dec- 2030 for ID cards, Digi-ID and
Mobile-IDs issued from
01.2016

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 64 / 80

Certificate Common Name (CN) Valid to Description

 EID-SK 2011 18-Mar- 2024 for all other personal
certificates issued from
06.2011

 KLASS3-SK
2010

 18-Mar-2024 for organizational
certificates.

 SK OCSP
2011
RESPONDER

 18-Mar- 2024 common OCSP
responder for all
certificates issued under
EECCRCA

7.1.2.2 Supported SK test certificate hierarchy chains

Note: the following test certificates have been registered in the JDigiDoc configuration file but
have not been included in the JDigiDoc distribution. In order to use the certificates with
JDigiDoc, you need to copy the certificate files to a location referenced by the CLASSPATH
(the files are accessible from https://installer.id.ee/media/esteidtestcerts.jar).

Note that the test certificates should not be used in live applications as the JDigiDoc library
does not give notifications to the user in case of test signatures.

Certificate Common Name (CN) Valid to Description

Test JUUR-SK 27-Aug-2016 SK’s 1st test root
certificate

 TEST-SK 26-Aug-2016 for all test cards and
certificates issued until
04.2011

 Test-SK OCSP
RESPONDER 2005

06-Apr-2012 TEST-SK OCSP
responder

 TEST of
KLASS3-SK
2010

 21-March-
2025

for organizational test
certificates

TEST EECCRCA 18-Dec-2030 SK’s 2nd test root
certificate

 TEST of
ESTEID-SK
2011

 07-Sep-2023 for test ID cards, Digi-ID
and Mobile-ID certificates
issued from 04.2011

 TEST of EID-
SK 2011

 07-Sep-2023 for all other test
certificates issued from
04.2011

 Test SK OCSP
RESPONDER
2011

 07-Sep-2024 common OCSP responder
for all test certificates
issued under TEST-
EECCRCA

For adding or removing CAs, OCSP responders or certificates, please refer to Section 3.5,
Configuring JDigiDoc, under Registering or removing CAs and OCSP responders.

https://installer.id.ee/media/esteidtestcerts.jar

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 65 / 80

 Cross-border support

The European Parliament and the Council adopted in December 1999 Directive 1999/93/EC
on a Community framework for electronic signatures. The purpose of the Directive was to
establish a legal framework for e-signatures and for certification service providers in the
internal market. It has defined a qualified electronic signature as an advanced electronic
signature which is based on a qualified certificate and which is created by a secure-signature-
creation device.

7.2.1 Trusted Service Provider Lists

Note: the support of using TSLs in JDigiDoc library is experimental and not tested.

The following is an overview of the features offered by JDigiDoc to support cross-border
operability by using Trusted Service Provider Lists.

TSLs are used for creation and validation of digital signatures. TSL directory specified in the
configuration file is used to retrieve the information about the Certification Service Providers.

During the creation of a digital signature, the TSL data is used according to the following
principles (steps 3, 4, 5 apply when OCSP confirmations are required):

1. The issuing CA from the signer’s certificate is retrieved.

2. The issuing CA is looked up from the TSL.

3. If the CA is found, then its corresponding OCSP Responder’s info is retrieved

4. If the OCSP Responders is found, then an OCSP request is sent.

5. The OCSP Responder sends and signs the response, including its own certificate

During verification, the signer’s CA and OCSP Responder info is checked against the TSL.

 Interoperability testing

7.3.1 XAdES/CAdES Remote Plugtests

The XAdES/CAdES Remote Plugtests© Event specifies a number of test cases for checking
the interoperability of the participants’ implementations of Advanced Electronic Signatures
for XML and CMS documents, also known as XAdES and CAdES.

The event evaluates (X-C)AdES interoperability by focusing on all the different XAdES forms
standardized in ETSI TS 101 903 and ETSI 101 733, including (X-C)AdES-BES, (X-C)AdES-
EPES, (X-C)AdES-T, (X-C)AdES-C, (X-C)AdES-X Type 1, (X-C)AdES-X Type 2, (X-C)AdES-
XL and (X-C)AdES-A. More detailed information about the events can be found at the Remote
Plugtest Portal: http:/www.etsi.org/plugtests/XAdes2/html/XAdES2.htm.

In the generation and cross-verification tests the participants are invited to generate a certain
set of valid XAdES/CAdES signatures with certain characteristics (generation). The rest of
participants are invited afterwards to verify these signatures (cross-verification).

In 2010, the main DigiDoc project coordinator AS Sertifitseerimiskeskus (SK) participated in
the 6th Plugtests event (a partly anonymized report of the event is available at: http://xades-
portal.etsi.org/pub/XAdES-CAdES%202010-Plugtests-External%20Final-Report-v1.0.pdf).
The signature generated by SK through DigiDoc applications in XAdES XL form was tested
for interoperability. The following properties of the signature needed to be verified by other
participants in the test case for the XAdES-XL form:

 SigningTime

 SigningCertificate

http://www.etsi.org/plugtests/XAdes2/html/XAdES2.htm
http://xades-portal.etsi.org/pub/XAdES-CAdES%202010-Plugtests-External%20Final-Report-v1.0.pdf
http://xades-portal.etsi.org/pub/XAdES-CAdES%202010-Plugtests-External%20Final-Report-v1.0.pdf

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 66 / 80

 SignatureTimeStamp

 CompleteCertificateRefs

 CompleteRevocationRefs ett

 SigAndRefsTimeStamp

 CertificateValues

 RevocationValues

The test data generated by SK resulted in 2 successful and 4 failed verifications by the other
participants.

7.3.2 ASiC Remote Plugtests

The compliance of the BDOC 2.1 containers to ASiC standard [6] was successfully tested in
the course of ASiC Remote Plugtests© Event (19 November to 07 December 2012). The event
aimed to ascertain the correctness and cross usability of ASiC-S and ASiC-E containers
created by different participant organizations worldwide. The test cases included generation
and cross-verification of ASiC containers with different features (including verification of
incorrect files). Each participant chose the appropriate set of tests to be implemented.

The main BDOC 2.1 project coordinator, AS Sertifitseerimiskeskus (SK), participated in the
event. Selected set of test cases was implemented with Libdigidocpp (C++) software library
of DigiDoc system [20]. Tests that were carried out by SK included functionality that was also
applicable for BDOC 2.1 file format [2] - thus, the tests included generation and cross-
verification of ASiC-E containers with XAdES signatures [4]. The following test cases were
covered:

 testing ASiC-E container structure,

 testing ASiC-E container’s syntactical conformance,

 testing correctness of XAdES-BES signature in ASiC-E container,

 negative tests of verifying ASiC-E container with invalid XAdES-BES signatures.

The implemented test cases did not cover generation and verification of signatures with time-
marks or time-stamps (according to BDOC-TM and BDOC-TS profiles).

Results achieved by SK were as follows:

 test files that were generated by SK were successfully cross-verified by five different
participants in 4 out of 6 implemented positive test cases (two of the test files were
not verified by other participants).

 SK successfully cross-verified files generated by other three participants in 5 out of 6
implemented positive test cases (one of the files could not be verified because of
incompatibility with BDOC 2.1 standard).

 SK successfully passed the negative test case which involved verification of
incorrect test file.

Additional information about the ASiC Remote Plugtests event can be found from
http://www.etsi.org/plugtests/ASiC/Home.htm.

Note that as BDOC 2.1 file format cross-usability tests are carried out for JDigiDoc and
Libdigidocpp libraries (see also the next chapter) then the ASiC Remote Plugtests results are
also reflected in JDigiDoc library.

http://www.etsi.org/plugtests/ASiC/Home.htm

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 67 / 80

7.3.3 DigiDoc framework cross-usability tests

Automated cross-usability tests of digitally signed and encrypted files are periodically carried
out between different DigiDoc software libraries [20]:

 Cross-usability tests of digitally signed files in DIGIDOC-XML 1.3 format (.ddoc files)
are carried out between JDigiDoc and CDigiDoc software libraries.

 Cross-usability of BDOC 2.1 (.bdoc or .asice) file format is tested between JDigiDoc
and Libdigidocpp libraries.

 Cross-usability of encrypted file format CDOC 1.0 is carried out between JDigiDoc
and CDigiDoc software libraries.

The interoperability tests are executed through the command line utility tools of the
software libraries (for example, in case of JDigiDoc library, the utility program which is
described in chapter 6 of the current document).

7.3.4 Testing JDigiDoc API in JDigiDoc utility program

The JDigiDoc API’s methods that are directly called out by JDigiDoc utility program are listed
in the table below. Note that as the API is tested via the JDigiDoc utility program then the
following functions are included in periodical tests and have been tested the most thoroughly.

JDigiDoc utility’s command Called JDigiDoc API method(s)

- ddoc- new SignedDoc(String format, String version);

SignedDoc.setProfile(String profile);

- ddoc- add <input - file>
<mime- type>

SignedDoc(String format, String version);

Si gnedDoc.addDataFile(File inputFile, String mime, String
contentType);

- ddoc- add- mem <input - file>
<mime- type>

SignedDoc(String format, String version);

SignedDoc.readFile(File inFile) ;

DataFile(String id, String contentType, String fileName,
String mimeType, SignedDoc sdoc) ;

DataFile.setBody(byte[] data) ;

SignedDoc.addDataFile(DataFile df) ;

- ddoc- sign <pin - code> SignedDoc.validate(boolean bStrong) ;

Signe dDoc.validateFormatAndVersion();

SignedDoc.countSignatures() ;

SignedDoc. verify(boolean checkDate, boolean
demandConfirmatio n) ;

SignatureProductionPlace(String city, String state, String
country, String zip);

ConfigManager.instance().getSignatureFactoryOfType(String
sType);

SignatureFactory.getType();

Pkcs12SignatureFactory. load(String storeName, String
storeType, String passwd) ;

SignatureFactory .getCertificate(int token , String pin);

SignedDoc.prepareSignature(X509Certificate cert, String []
roles, SignatureProductionPlace adr);

ConfigManager .instance(). getStringProperty(String key,
String def);

eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc~addDataFile~QFile;~QString;~QString;%E2%98%82File
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc~addDataFile~QFile;~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc~addDataFile~QFile;~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignatureProductionPlace.java%E2%98%83SignatureProductionPlace~SignatureProductionPlace~QString;~QString;~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignatureProductionPlace.java%E2%98%83SignatureProductionPlace~SignatureProductionPlace~QString;~QString;~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignatureProductionPlace.java%E2%98%83SignatureProductionPlace~SignatureProductionPlace~QString;~QString;~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignatureProductionPlace.java%E2%98%83SignatureProductionPlace~SignatureProductionPlace~QString;~QString;~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc~prepareSignature~QX509Certificate;~%5C%E2%98%83QString;~QSignatureProductionPlace;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc~prepareSignature~QX509Certificate;~%5C%E2%98%83QString;~QSignatureProductionPlace;%E2%98%82SignatureProductionPlace

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 68 / 80

JDigiDoc utility’s command Called JDigiDoc API method(s)

Signature .setProfile(String profile) ;

Signature.calculateSignedInfoDigest();

Signature .calculateSignedInfoXML();

SignatureFactory .sign(byte[] digest, int token, String pin,
Signature sig);

Signature .setSignatureValue(b yte[] sigval);

Signature.setHttpFrom(String s);

Signature .getConfirmation();

- ddoc- in <input - file> DigiDocFactory. readSignedDocOfType(String fname, boolean
isBdoc, ArrayList lerr);

- ddoc- in - stream <input - file> SAXDigiDocFactory. readSignedDocOfType(String f name, boolean
isBdoc, ArrayList lerr);

- ddoc- in - ostream <input -
file>

-

- ddoc- out <output - file> SignedDoc.writeToFile(File outputFile);

- ddoc- out - stream <output -
file>

SignedDoc.writeToStream(OutputStream os);

- ddoc- out - ostream <output -
file>

-

- ddoc- validate SignedDoc. verify(boolean checkDate, boolean
demandConfirmation) ;

SignedDoc.hasFatalErrs(ArrayList lerrs);

SignedDoc.countSignatures();

SignedDoc.countDataFiles() ;

DataFile.validate(boolean bStrong) ;

Signature.verify(SignedDoc sdoc, ArrayList lerrs) ;

Get methods of SignedDoc, Signature, KeyInfo classes .

- ddoc- extract <data - file - id>
<output - file>

SignedDoc.countDataFiles();

Sign edDoc.get DataFile(int idx);

DataFile.getId();

DataFile .getBodyAsStream();

- check - cert SignedDoc. readCertificate (File certFile);

Not ary Factory .checkCertificate(X509Certificate cert);

- cdoc- in <input - file> ConfigManager.instance().getEncryptedDataParser();

EncryptedDataParser.readEncryptedData(String fileName);

- cdoc- list Get methods of EncryptedData, EncryptedKey and
EncryptionProperty classes.

- cdoc- validate EncryptedData.validate();

- cdoc- test <input - file> -

- cdoc- encrypt <input - file>
<output - file>

SignedDoc.readFile(File inFile);

EncryptedData .setData(byte[] data);

EncryptedData .setDataStatus(int status);

EncryptedData .addProperty(String name, String content);

EncryptedData .e ncrypt(int nCompressOption);

eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignature.java%E2%98%83Signature
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignature.java%E2%98%83Signature~setProfile~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignature.java%E2%98%83Signature
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc.factory%7BSignatureFactory.java%E2%98%83SignatureFactory
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc.factory%7BSignatureFactory.java%E2%98%83SignatureFactory~sign~%5C%E2%98%83B~I~QString;~QSignature;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc.factory%7BSignatureFactory.java%E2%98%83SignatureFactory~sign~%5C%E2%98%83B~I~QString;~QSignature;%E2%98%82Signature
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignature.java%E2%98%83Signature
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignature.java%E2%98%83Signature
eclipse-javadoc:%E2%98%82=JDigiDoc/jdigidoc%5C/src%5C/main%5C/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc
eclipse-javadoc:%E2%98%82=JDigiDoc/jdigidoc%5C/src%5C/main%5C/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc~hasFatalErrs~QArrayList;%E2%98%82ArrayList
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BDataFile.java%E2%98%83DataFile
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc.factory%7BNotaryFactory.java%E2%98%83NotaryFactory~checkCertificate~QX509Certificate;%E2%98%82X509Certificate
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc~readFile~QFile;%E2%98%82File
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData~addProperty~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData~addProperty~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 69 / 80

JDigiDoc utility’s command Called JDigiDoc API method(s)

EncryptedData .toXML();

- cdoc- encrypt - sk <input -
file> <output - file>

ConfigManager.instance().getIntProperty(String key, int
def);

SignedDoc(String format, String version);

SignedDoc.addDataFile(File inputFile, String mime, String
contentType);

SignedDoc.readFile(File in File);

DataFile .setBase64Body(byte[] data);

SignedDoc.toXML();

EncryptedData .setData(byte[] data);

EncryptedData .setDataStatus(int status);

EncryptedData .addProperty(String name, String content);

EncryptedData .setMimeType(String str);

EncryptedData .encrypt(int nCompressOption);

EncryptedData .toXML();

- cdoc- encrypt - stream <input -
file> <output - file>

ConfigManager.instance().getIntProperty(String key, int
def);

EncryptedData .addProperty(String name, String content);

EncryptedData .encry ptStream(InputStream in, OutputStream
out, int nCompressOption);

- cdoc- recipient
<certificate - file>

EncryptedData(String id, String type, String mimeType,
String xmlns, String encryptionMethod);

SignedDoc. readCertificate (File certFile) ;

SignedDoc.getCommonName(String dn);

EncryptedData .getNumKeys();

EncryptedKey(String id, String recipient, String
encryptionMethod, String keyName, String
carriedKeyName, X509Certificate recvCert);

EncryptedData .addEncryptedKey(EncryptedKey key);

- cdoc- decrypt <pin> <output -
file>

ConfigManager.instance().getSignatureFactoryOfType(String
sType);

SignatureFactory.getType();

Pkcs12SignatureFactory.load(String storeName, String
storeType, String passwd);

SunPkcs11SignatureFactory.init(String driver, String
passwd, int nSlot);

SignatureFactory .getAuthCertificate(int token, String pin);

EncryptedData.getRecvIndex(X509Certificate cert);

EncryptedData.decrypt(String driver, String keystoreFile,
int nKey, int token, String pin);

- cdoc- decrypt - sk <pin>
<output - file>

ConfigManager.instance().getSignatureFactoryOfType(String
sType);

SignatureFactory.getType();

Pkcs12SignatureFactory.load(String storeName, String
storeType, String passwd);

SunPkcs11SignatureFactory.init(String driver, String
passwd, int nSlot);

eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc~addDataFile~QFile;~QString;~QString;%E2%98%82File
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc~addDataFile~QFile;~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc~addDataFile~QFile;~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc~readFile~QFile;%E2%98%82File
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BDataFile.java%E2%98%83DataFile
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData~addProperty~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData~addProperty~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData~setMimeType~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData~addProperty~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData~addProperty~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData~encryptStream~QInputStream;~QOutputStream;~I%E2%98%82InputStream
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData~encryptStream~QInputStream;~QOutputStream;~I%E2%98%82OutputStream
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData~EncryptedData~QString;~QString;~QString;~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData~EncryptedData~QString;~QString;~QString;~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData~EncryptedData~QString;~QString;~QString;~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData~EncryptedData~QString;~QString;~QString;~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData~EncryptedData~QString;~QString;~QString;~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc~getCommonName~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedKey.java%E2%98%83EncryptedKey~EncryptedKey~QString;~QString;~QString;~QString;~QString;~QX509Certificate;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedKey.java%E2%98%83EncryptedKey~EncryptedKey~QString;~QString;~QString;~QString;~QString;~QX509Certificate;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedKey.java%E2%98%83EncryptedKey~EncryptedKey~QString;~QString;~QString;~QString;~QString;~QX509Certificate;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedKey.java%E2%98%83EncryptedKey~EncryptedKey~QString;~QString;~QString;~QString;~QString;~QX509Certificate;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedKey.java%E2%98%83EncryptedKey~EncryptedKey~QString;~QString;~QString;~QString;~QString;~QX509Certificate;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedKey.java%E2%98%83EncryptedKey~EncryptedKey~QString;~QString;~QString;~QString;~QString;~QX509Certificate;%E2%98%82X509Certificate
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData~addEncryptedKey~QEncryptedKey;%E2%98%82EncryptedKey
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc.factory%7BSignatureFactory.java%E2%98%83SignatureFactory
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc.factory%7BSignatureFactory.java%E2%98%83SignatureFactory~getAuthCertificate~I~QString;%E2%98%82String

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 70 / 80

JDigiDoc utility’s command Called JDigiDoc API method(s)

SignatureFactory .getAuthCertificate(int token, String pin);

EncryptedData.getRecvIndex(X509Certificate cert);

EncryptedData.decrypt(String driver, String keystoreFile,
int nKey, int token, String pin);

EncryptedData .getData();

ConfigManager.instance().getDigiDocFactory();

DigiDocFactory .r eadSignedDoc(String fileName);

SignedDoc.getDataFile(int idx);

DataFile .getBodyAsStream();

- cdoc- decrypt - stream <input -
file> <pin> < output - file>

ConfigManager.getEncryptedStreamParser();

EncryptedStreamParser.decryptStreamUsingTokenType(InputStre
am dencStream, OutputStream outs, int token, String
pin, String tokenType, String pkcs12Keystore);

- cdoc- decrypt - stream - recv
<input - file> <p in> <output -
file> <recipient>

ConfigManager.instance().getEncryptedStreamParser();

EncryptedStreamParser.decryptStreamUsingRecipientName(Input
Stream dencStream, OutputStream outs, int token,
String pin, String recipientName);

- cdoc- decrypt - pkcs12
<keystore - file> <keystore -
passwd> <keystore - type>
<output - file>

Pkcs12SignatureFactory.load(String storeName, String
storeType, String passwd);

Pkcs12SignatureFactory.getAuthCertificate(int token, String
pin);

EncryptedData.getRecvIndex(X509Certificate cer t);

EncryptedData .decryptPkcs12(int nKey, String keystore,
String storepass, String storetype);

- cdoc- decrypt - pkcs12 - sk
<keystore - file> <keystore -
passwd> <keystore - type>
<output - file>

Pkcs12SignatureFactory.load(String storeName, String
storeType, String passwd);

Pkcs12Signatu reFactory.getAuthCertificate(int token, String
pin);

EncryptedData.getRecvIndex(X509Certificate cert);

EncryptedData .decryptPkcs12(int n Key, String keystore,
String storepass, String storetype);

EncryptedData .getData();

ConfigManager.instance().getDigiDocFactory();

DigiDocFactory .readSignedDoc(String fileName);

Signed Doc.getDataFile(int idx);

DataFile .getBodyAsStream();

- cdoc- decrypt - pkcs12 - stream
<input - file> <keystore - file>
<keystore - passwd> <keystore -
type > <output - file>

ConfigManager.instance().getEncryptedStreamParser();

EncryptedStreamParser.decryptStreamUsingTokenType(InputStre
am dencStream, OutputStream outs, int token, String
pin, String tokenType, String pkcs12Keystore);

- cdoc- decrypt - pkcs12 - stream -
sk <input - file> <keystore -
file> <keystore - passwd>
<keystore - type> <output -
file>

ConfigManager.instance().getEncryptedStreamParser();

EncryptedStreamParser.decryptStreamUsingTokenType(InputStre
am dencStream, OutputStream outs, int token, String
pin, String tokenType, String pkcs12Keystore);

EncryptedData.getData();

ConfigManager.instance().getDigiDocFactory();

DigiDocFactory.readSignedDoc(String fileName);

eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc.factory%7BSignatureFactory.java%E2%98%83SignatureFactory
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc.factory%7BSignatureFactory.java%E2%98%83SignatureFactory~getAuthCertificate~I~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc.factory%7BDigiDocFactory.java%E2%98%83DigiDocFactory
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc.factory%7BDigiDocFactory.java%E2%98%83DigiDocFactory~readSignedDoc~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BDataFile.java%E2%98%83DataFile
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData~decryptPkcs12~I~QString;~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData~decryptPkcs12~I~QString;~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData~decryptPkcs12~I~QString;~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData~decryptPkcs12~I~QString;~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData~decryptPkcs12~I~QString;~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData~decryptPkcs12~I~QString;~QString;~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.xmlenc%7BEncryptedData.java%E2%98%83EncryptedData
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc.factory%7BDigiDocFactory.java%E2%98%83DigiDocFactory
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc.factory%7BDigiDocFactory.java%E2%98%83DigiDocFactory~readSignedDoc~QString;%E2%98%82String
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BSignedDoc.java%E2%98%83SignedDoc
eclipse-javadoc:%E2%98%82=JDigiDoc_r5569/java%3Cee.sk.digidoc%7BDataFile.java%E2%98%83DataFile

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 71 / 80

JDigiDoc utility’s command Called JDigiDoc API method(s)

SignedDoc.getDataFile(int idx);

DataFile.getBodyAsStream();

8. JDigiDoc library’s implementation notes

The following section describes properties of DIGIDOC-XML 1.3 and BDOC 2.1 files that are
not strictly defined in the DIGIDOC-XML 1.3 [1] and BDOC 2.1 specification [2] but are used
in JDigiDoc library’s implementation (and also in other DigiDoc software libraries) of the file
formats.

 General implementation notes

Digital signature related notes:

1. One OCSP confirmation (time-mark) is allowed for each signature (due to security
reasons and in order to maintain testing efficiency).

2. <Transforms> element is allowed in the signature since v3.10 of the library for
interoperability purposes. The transformation algorithms are not applied during
signature validation.

3. All data files in the container must be signed. All signatures in the container must
sign all of the data files.

4. Exclusive Canonicalization method (http://www.w3.org/2001/10/xml-exc-c14n#) is
supported during signature validation for better interoperability since v3.10 of the
library.

5. During signature creation, it is checked that there is only one <ClaimedRole>
element in the signature, which contains the signer’s role and optionally the signer’s
resolution. If the <ClaimedRole> element contains both role and resolution then they
must be separated with a slash mark, e.g. “role / resolution”. Note that when setting
the resolution value then role must also be specified.

6. During signature validation, at most two <ClaimedRole> elements are allowed for a
signature.

7. Altering files in older formats SK-XML 1.0, DIGIDOC-XML 1.1 and 1.2 is not
supported by the library. It is possible to validate and extract data files from these
documents, but validation is expected to return error code about old DigiDoc file
format. JDigiDoc utility program (identically to DigIDoc3 Client application) regards
this validation error as a validation warning.

8. Opening and altering files in BDOC 1.0 format is not supported.

Certificate related notes:

1. Valid signatures (qualified electronic signatures) can be created with a certificate
that has “Non-repudiation” value (also referred to as “Content Commitment”) in its
“Key usage” field. The requirement is based on the following sources:

o ETSI TS 102 280 (V1.1.1): “X.509 V3 Certificate Profile for Certificates
Issued to Natural Persons” [16]; chap. 5.4.3;

o Profile of certificates issued to private persons by AS Sertifitseerimiskeskus:
“Certificates on identity card of Republic of Estonia”, version 3.3 [17];
appendix A.3.3;

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 72 / 80

o Profile of certificates issued to legal entities by AS Sertifitseerimiskeskus:
“Profile of institution certificates and Certificate Revocation Lists”, version
1.3 [18]; chap. 3.2.2.

2. Signature can be created with a certificate that doesn’t have “Non-repudiation” value
in its “Key-Usage” field when specific parameters have been set but validation of
such signature will produce a respective error message and the signature is not
considered as a qualified electronic signature.

3. During signature validation, it is checked that the validity periods of the signer’s
certificate and all the certificates in its CA chain include the signature creation time
(value of the producedAt field in OCSP response).

 DIGIDOC-XML 1.3 specific implementation notes

1. The only data file embedding mode that is supported, is
CONTENT_EMBEDDED_BASE64 which means that the data file is included in the
DigiDoc container in base64 encoding.

2. The nonce value’s calculation in case of time-marking mechanism of DIGIDOC-XML
1.3 file format is implemented as follows:

- the contents of <SignatureValue> element (i.e. the value without XML tags) is
taken and decoded from base64 encoding;

- digest of the value found in the previous step is calculated by using SHA-1
algorithm.

- the digest value is included in the OCSP request’s “nonce” field and must be
present in the respective field of the OCSP response.

3. In case of DigiDocService web service [15] and DIGIDOC-XML 1.3 file format,
JDigiDoc software library supports HASHCODE data file mode for intermediary ddoc
files. The mode allows sending only the data file’s digest value to the service,
instead of embedding the whole data file to the container. In this case, it is possible
to add larger data files than 4MB to the container (which would otherwise be the
maximum data file size allowed in DigiDocService).

4. Embedding data files to the container as pure XML (EMBEDDED data file mode)
and signing data files that are not included in the container (DETACHED data file
mode) are not supported.

5. <DataFile> element’s Id attribute value is set as “D<seq_no>” when adding the file to
DigiDoc container. During verification, the Id attribute “DO” is also accepted as valid.

6. In case of DIGIDOC-XML 1.3 documents, the following validation errors are regarded as
minor technical errors and are treated as validation warnings in jdigidoc utility
program (identically to DigiDoc3 Client application):

- <DataFile> element’s xmlns attribute is missing.

- <IssuerSerial><X509IssuerName> and/or <IssuerSerial><X509SerialNumber>
element’s xmlns attribute is missing.

7. It is possible to use JDigiDoc configuration file’s parameter CHECK_OCSP_NONCE
with DIGIDOC-XML 1.3 files, which, if set to “true”, means that the presence of
OCSP response’s (the contents of <EncapsulatedOCSPValue> element) nonce
value’s ASN.1 prefix is not required during signature validation. Otherwise, it is
required by RFC 2560 specification (“Online Certificate Status Protocol - OCSP”)
that the OCSP response’s nonce value must have the corresponding ASN.1 prefix
(OCTET STRING tag (04hex) followed by the length of the nonce value in
hexadecimal format). By default, the nonce value’s ASN.1 prefix is not checked in

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 73 / 80

order to support validation of DIGIDOC-XML 1.3 files created with JDigiDoc library’s
version below v3.7.

 BDOC 2.1 specific implementation notes

Digital signature related notes:

1. The supported BDOC 2.1 signature profile is a XAdES-EPES profile with time-mark
(BDOC-TM).

The basic BDOC profile is XAdES-EPES as BDOC 2.1 specification requires that
<SignaturePolicyIdentifier> element is present ([2], chap. 5.2).

It is expected that a time-mark (OCSP confirmation) has been added to the
signature as according to BDOC 2.1 specification ([2], chap. 6) a signature is not
considered complete or valid without validation data from external services (i.e. a
time-mark).

2. Signatures with time-stamps (i.e. BDOC TS profile) are not supported (including
archive time-stamps) and will be implemented in the future. Validation data must be
added to the signature with a time-mark (according to BDOC 2.1 specification [2],
chap. 6.1).

3. In case of BDOC signatures with time-mark, the OCSP nonce field’s value is
calculated as follows:

- the contents of <SignatureValue> element (i.e. the value without XML tags) is
taken and decoded from base64 encoding;

- digest of the value found in the previous step is calculated by using SHA-256
algorithm.;

- the digest value found in the previous step and the digest algorithm that was used
are transformed as defined by the following ASN.1 structure:

TBSDocumentDigest ::= SEQUENCE {

algorithm AlgorithmIdentifier,

digest OCTET STRING

}

- the ASN.1 block value produced in the previous step is included in the OCSP
request’s “nonce” field and must be present in the respective field of the OCSP
response.

4. In case of signing with ECC keys (by using ECDSA algorithm), concatenation
method is used for creating signature value.

5. In case of BDOC 2.1 documents, SHA-256 hash function is used by default when
calculating data file digests and the digest that is signed. In case of Estonian ID
cards with certificates issued before 2011, the SHA-224 digest type will be
automatically selected and used for calculating signature value’s digest (the final
digest that is signed), other options are not supported here. Note that other digest in
the signature (e.g. data file digests, signer certificate’s digest) are still calculated with
SHA-256 (the default digest type).

6. When a hash function that is weaker than SHA-256 (or SHA-224 in the special case
with pre-2011 ID-cards) has been used then a warning message about weak digest
method is produced to the user. It is recommended to regard the error as a
validation warning (identically to DigiDoc3. Client application and digidoc-tool.cpp
utility program).

7. The signature policy document’s hash value in <SigPolicyHash> element is checked
during validation process (even though it is not mandatory according to BDOC 2.1

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 74 / 80

specification [2], chap. 5.2). The hash value must correspond to the hash value of
the document that is located at https://www.sk.ee/repository/bdoc-spec21.pdf.

8. XML namespace prefixes are used in case of all XML elements (e.g. “asic:”, “ds:”,
“xades:”).

9. The <ds:Signature> element’s Id attribute value is set to “S<seq_no>” during
signature creation where sequence numbers are counted from zero. Other Id values
that are used in the sub-elements of the <ds:Signature> element contain the
signature’s Id value as a prefix. During verification, different Id attribute values are
also supported but are not tested periodically.

Container related notes:

1. BDOC 2.1 files are created with .bdoc file extension. Extensions .asice and .sce are
supported and recognized only when reading in an existing BDOC 2.1 file which has
the respective extension value.

2. Signatures are stored in META-INF/signatures*.xml files where ‘*’ is a sequence
number. Counting is started from one (note that Libdigidocpp library starts counting
from zero). Two signtures*.xml files with duplicate names are not allowed in one
container.

3. There can be only one signature in one signatures*.xml file due to BDOC format’s
legacy issues. Multiple signatures in one signatures*.xml file is not supported in
order to maintain testing efficiency. The <ds:Signature> element’s Id attribute values
in different signatures*.xml files are generated in the form of “S<seq_no”, the
sequence numbers are always unique within one BDOC container.

4. The META-INF/manifest.xml file’s OpenDocument version attribute value is “1.0”
(instead of “1.2”) as the results of ASiC plug-tests event shows that version 1.0 is
used only. The requirement of the OpenDocument version attribute value comes
from OpenDocument standard [5] which is referred to in ASiC standard [6].

5. Relative file paths are used, for example “META-INF/signatures*.xml” and
“document.txt” instead of “/META-INF/signatures*.xml” and “/document.txt” to ensure
better interoperability with third party applications when validating signatures.
Advantage of using relative paths instead of absolute paths in the ASiC container
was determined in the course of ASiC plug-tests (see also chap. “7.3.2 ASiC
Remote Plugtests”).

6. The ZIP container’s comment field contains version number of the library that was
used for creating the file. The value can be useful, for example, when trying to
determine the origin of an erroneous file.

7. “mimetype" file is not compressed in the BDOC 2.1 file’s ZIP container as the results
of ASiC plug-tests event shows that this solution is most widely used.

8. It is not allowed to add two data files with the same name to a BDOC container as
the signed data file must be uniquely identifiable in the container.

9. JDigiDoc does not support references to data files in BDOC container that start with
slash character, i.e. value in the signatures*.xml file’s <Reference> element’s “URI”
attribute and manifest.xml file’s <file-entry> element’s “full-path” attribute should not
start with a slash.

https://www.sk.ee/repository/bdoc-spec21.pdf

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 75 / 80

Appendix 1: JDigiDoc configuration file

A sample jdigidoc.cfg file may consist of the following sections and possible entries:

 user-specific values to be always checked and possibly modified in purple

 optional and alternative settings in blue

 section headers in green

 # is indicating all out-commented parameters and additional notes

JDigiDoc config file

Signature processor settings

DIGIDOC_SIGN_IMPL = ee.sk.digidoc.factory.PKCS11SignatureFactory

DIGIDOC_SIGN_IMPL = ee.sk.digidoc.factory.Pkcs12SignatureFactory

DIGIDOC_SIGN_IMPL_PKCS11 = ee.sk.digidoc.factory.PKCS11SignatureFactory

DIGIDOC_SIGN_IMPL_PKCS12 = ee.sk.digidoc.factory.PKCS12SignatureFactory

DIGIDOC_NOTARY_IMPL = ee.sk.digidoc.factory.BouncyCastleNotaryFa ctory

DIGIDOC_FACTORY_IMPL = ee.sk.digidoc.factory.SAXDigiDocFactory

DIGIDOC_TIMESTAMP_IMPL = ee.sk.digidoc.factory.BouncyCastleTimestampFactory

CANONICALIZATION_FACTORY_IMPL = ee.sk.digidoc.c14n.TinyXMLCanonicalizer

DIGIDOC_TSLFAC_IMPL = ee.sk.digidoc.tsl.DigiDocTrustServiceFactory

ENCRYPTED_DATA_PARSER_IMPL = ee.sk.xmlenc.factory.EncryptedDataSAXParser

ENCRYPTED_STREAM_PARSER_IMPL = ee.sk.xmlenc.factory.EncryptedStreamSAXParser

Security settings

DIGIDOC_SECURITY_PROVIDER = org.boun cycastle.jce.provider.BouncyCastleProvider

DIGIDOC_SECURITY_PROVIDER_NAME = BC

Big file handling

DIGIDOC_MAX_DATAFILE_CACHED = 4096

use this param if you want temp files in specific dir. You must have write access to it

default is to use java.io .tempdir

DIGIDOC_DF_CACHE_DIR=/tmp

DATAFILE_HASHCODE_MODE = FALSE

Signature verification settings

CHECK_OCSP_NONCE = false

default digest type for hash calculation - SHA- 1, SHA- 224, SHA- 256, SHA- 512

DIGIDOC_DIGEST_TYPE = SHA- 256

for .ddoc files, SHA- 1 digest type is used always

BDOC_SHA1_CHECK = TRUE

digidoc default profile for BDOC format

DIGIDOC_DEFAULT_PROFILE = TM

TM = Qualified BDOC signature with time - marks

alternative BDOC profile is BES

PKCS#11 module settings - change this according to your signature device!!!

DIGIDOC_SIGN_PKCS11_DRIVER = opensc- pkcs11

i n linux and OSX environment: opensc - pkcs11.so

for AID cards (GPK8000): DIGIDOC_SIGN_PKCS11_DRIVER = pk2privXAdES - XL.SCOK/SK/

DIGIDOC_SIGN_PKCS11_WRAPPER = PKCS11Wrapper

log4j config file - change this!!!

DIGIDOC_LOG4J_CONFIG = ./ log4j .properties

OCSP responder URL - change this!!!

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 76 / 80

DIGIDOC_OCSP_RESPONDER_URL = http://ocsp.sk.ee

T est OCSP responder URL (previously http://www.openxades.org/cgi - bin/ocsp.cgi)

DIGIDOC_OCSP_RESPONDER_URL = http://demo.sk.ee/ocsp

connect timeout in milliseconds. 0 means wait forever

OCSP_TIMEOUT = 30000

By default, key - usage non - repudia tion bit is checked for signature certificates

KEY_USAGE_CHECK = TRUE

Sign OCSP requests or not. Depends on your responder

SIGN_OCSP_REQUESTS = FALSE

OCSP_SAVE_DIR = .

The PKCS#12 file used to sign OCSP requests

DIGIDOC_PKCS12_CONTAINER = <your - pkcs12 - file - name>

password for this key

DIGIDOC_PKCS12_PASSWD = <your - pkcs12 - passwd>

serial number of your PKCS#12 signature cert .

Use ee.sk.test.OCSPCertFinder to find this

DIGIDOC_OCSP_SIGN_CERT_SERIAL = <your - pkcs12 - cert - serial>

CA ce rtificates. Used to do a prelimi nary check of signer.

use jar:// to get certs from classpath

use forward slashes both on your Linux and other environments

DIGIDOC_CAS = 1

DIGIDOC_CA_1_NAME = AS Sertifitseerimiskeskus

DIGIDOC_CA_1_TRADENAME = SK

DIGIDOC_CA_1_CERTS = 19

DIGIDOC_CA_1_CERT1 = jar://certs/EID - SK.crt

DIGIDOC_CA_1_CERT2 = jar://certs/EID - SK 2007.crt

DIGIDOC_CA_1_CERT3 = jar://certs/ESTEID - SK.crt

DIGIDOC_CA_1_CERT4 = jar://certs/ESTEID - SK 2007.crt

DIGIDOC_CA_1_CERT5 = jar://certs/JUUR - SK.crt

DIGIDOC_CA_1_CERT6 = jar://certs/KLASS3 - SK.crt

DIGIDOC_CA_1_CERT7 = jar://certs/EECCRCA.crt

DIGIDOC_CA_1_CERT8 = jar://certs/ESTEID - SK 2011.crt

DIGIDOC_CA_1_CERT9 = jar://certs/EID - SK 2011.crt

DIGIDOC_CA_1_CERT10 = jar://certs/KLASS3 - SK 2010.crt

DIGIDOC_CA_1_CERT11 = jar://certs/KLASS3 - SK 2010 EECCRCA.crt

DIGIDOC_CA_1_CERT12 = jar://certs/ESTEID - SK 2015.crt

SK- Test CA certs - only present if you have esteidtestcerts .jar in CLASSPATH . Should be

#commented out in case of live applica tions.

DIGIDOC_CA_1_CERT13 = jar://certs/TEST - SK.crt

DIGIDOC_CA_1_CERT14 = jar://certs/TEST EECCRCA.crt

DIGIDOC_CA_1_CERT15 = jar://certs/TEST ESTEID - SK 2011.crt

DIGIDOC_CA_1_CERT16 = jar://certs/TEST EID - SK 2011.crt

DIGIDOC_CA_1_CERT17 = jar://certs/TEST KLASS3 2010.crt

DIGIDOC_CA_1_CERT18 = jar://certs/test Juur - SK.crt

DIGIDOC_CA_1_CERT19 = jar://certs/TEST ESTEID - SK 2015.crt

OCSP responder certificates - change this!!!

Note! if you add or remove som e of these certificates, update the following number

also pay attention to proper naming

DIGIDOC_CA_1_OCSPS = 20

DIGIDOC_CA_1_OCSP1_CA_CN = ESTEID- SK

DIGIDOC_CA_1_OCSP1_CA_CERT = jar://certs/ESTEID - SK 2007.crt

DIGIDOC_CA_1_OCSP1_CN = ESTEID- SK 2007 OCSP RESPONDER

DIGIDOC_CA_1_OCSP1_CERT = jar://certs/ESTEID - SK 2007 OCSP.crt

DIGIDOC_CA_1_OCSP1_URL = http://ocsp.sk.ee

http://demo.sk.ee/ocsp

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 77 / 80

DIGIDOC_CA_1_OCSP2_CA_CN = KLASS3- SK

DIGIDOC_CA_1_OCSP2_CA_CERT = jar://certs/KLASS3 - SK.crt

DIGIDOC_CA_1_OCSP2_CN = KLASS3- SK OCSP RESPONDER

DIGIDOC_CA_1_OCSP2_CERT = jar://certs/KLASS3 - SK OCSP.crt

DIGIDOC_CA_1_OCSP2_CERT_1 = jar ://certs/ KLASS3- SK OCSP 2006.crt

DIGIDOC_CA_1_OCSP2_URL = http://ocsp.sk.ee

DIGIDOC_CA_1_OCSP3_CA_CN = EID- SK

DIGIDOC_CA_1_OCSP3_CA_CERT = jar://certs/EID - SK 2007.crt

DIGIDOC_CA_1_OCSP3_CN = EID- SK 2007 OCSP RESPONDER

DIGIDOC_CA_1_OCSP3_CERT = jar://cer ts/EID - SK 2007 OCSP.crt

DIGIDOC_CA_1_OCSP3_URL = http://ocsp.sk.ee

EID certificates (for example Mobile - ID certificates) issued since

20.01.2007 validity confirmation service

DIGIDOC_CA_1_OCSP4_CERT = jar://certs/EID - SK 2007 OCSP.crt

DIGIDOC_CA_1_OCSP4_CN = EID- SK OCSP RESPONDER 2007

DIGIDOC_CA_1_OCSP4_CA_CERT = jar://certs/EID - SK 2007.crt

DIGIDOC_CA_1_OCSP4_CA_CN = EID- SK 2007

DIGIDOC_CA_1_OCSP4_URL = http://ocsp.sk.ee

Since 20.01.2007 issued ID -ÃÁÒÄ ÃÅÒÔÉÆÉÃÁÔÅÓƦ ÖÁÌÉÄÉÔÙ ÃÏÎÆÉÒÍÁtion service

DIGIDOC_CA_1_OCSP5_CN = ESTEID- SK 2007 OCSP RESPONDER

DIGIDOC_CA_1_OCSP5_CERT = jar://certs/ESTEID - SK 2007 OCSP.crt

DIGIDOC_CA_1_OCSP5_CA_CERT = jar://certs/ESTEID - SK 2007.crt

DIGIDOC_CA_1_OCSP5_CA_CN = ESTEID- SK 2007

DIGIDOC_CA_1_OCSP5_URL = http://ocsp.sk.ee

DIGIDOC_CA_1_OCSP6_CN = ESTEID- SK 2007 OCSP RESPONDER 2010

DIGIDOC_CA_1_OCSP6_CERT = jar://certs/ESTEID - SK 2007 OCSP 2010.crt

DIGIDOC_CA_1_OCSP6_CA_CERT = jar://certs/ESTEID - SK 2007.crt

DIGIDOC_CA_1_OCSP6_CA_CN = ESTEID- SK 2007

DIGIDOC_CA_1_OCSP6_URL = http://ocsp.sk.ee

DIGIDOC_CA_1_OCSP7_CERT = jar://certs/EID - SK 2007 OCSP 2010.crt

DIGIDOC_CA_1_OCSP7_CN = EID- SK 2007 OCSP RESPONDER 2010

DIGIDOC_CA_1_OCSP7_CA_CERT = jar://certs/EID - SK 2007.crt

DIGIDOC_CA_1_OCSP7_CA_CN = EID- SK 2007

DIGIDOC_CA_1_OCSP7_URL = http://ocsp.sk.ee

DIGIDOC_CA_1_OCSP8_CERT = jar://certs/EID - SK 2007 OCSP.crt

DIGIDOC_CA_1_OCSP8_CN = EID- SK 2007 OCSP RESPONDER

DIGIDOC_CA_1_OCSP8_CA_CERT = jar://certs/EID - SK 2007.crt

DIGIDOC_CA_1_OCSP8_CA_CN = EID- SK 2007

DIGIDOC_CA_1_OCSP8_URL = http://ocsp.sk.ee

DIGIDOC_CA_1_OCSP9_CERT = jar://certs/ESTEID - SK OCSP 2005.crt

DIGIDOC_CA_1_OCSP9_CN = ESTEID- SK OCSP RESPONDER 2005

DIGIDOC_CA_1_OCSP9_CA_CERT = jar://certs/ESTEID - SK.crt

DIGIDOC_CA_1_OCSP9_CA_CN = ESTEID- SK

DIGIDOC_CA_1_OCSP9_URL = http://ocsp.sk.ee

DIGIDOC_CA_1_OCSP10_CERT = jar://certs/SK OCSP 2011.crt

DIGIDOC_CA_1_OCSP10_CN = SK OCSP RESPONDER 2011

DIGIDOC_CA_1_OCSP10_CA_CERT = jar://certs/EECCRCA.crt

DIGIDOC_CA_1_OCSP10_CA_CN = EE Certification Centre Ro ot CA

DIGIDOC_CA_1_OCSP10_URL = http://ocsp.sk.ee

DIGIDOC_CA_1_OCSP11_CA_CN = KLASS3- SK

DIGIDOC_CA_1_OCSP11_CA_CERT = jar://certs/KLASS3 - SK.crt

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 78 / 80

DIGIDOC_CA_1_OCSP11_CN = SK Proxy OCSP Responder 2009

DIGIDOC_CA_1_OCSP11_CERT = jar://certs/SK_proxy_OCSP_resp onder_2009.pem.cer

DIGIDOC_CA_1_OCSP11_URL = http://ocsp.sk.ee

DIGIDOC_CA_1_OCSP12_CA_CN = KLASS3- SK

DIGIDOC_CA_1_OCSP12_CA_CERT = jar://certs/KLASS3 - SK.crt

DIGIDOC_CA_1_OCSP12_CN = KLASS3- SK OCSP RESPONDER 2009

DIGIDOC_CA_1_OCSP12_CERT = jar://certs/KLAS S3- SK OCSP 2009.crt

DIGIDOC_CA_1_OCSP12_URL = http://ocsp.sk.ee

DIGIDOC_CA_1_OCSP13_CERT = jar://certs/ESTEID - SK OCSP.crt

DIGIDOC_CA_1_OCSP13_CN = ESTEID- SK OCSP RESPONDER

DIGIDOC_CA_1_OCSP13_CA_CERT = jar://certs/ESTEID - SK.crt

DIGIDOC_CA_1_OCSP13_CA_CN = ESTEID- SK

DIGIDOC_CA_1_OCSP13_URL = http://ocsp.sk.ee

DIGIDOC_CA_1_OCSP14_CERT = jar://certs/EID - SK OCSP.crt

DIGIDOC_CA_1_OCSP14_CERT_1 = jar://certs/EID - SK OCSP 2006.crt

DIGIDOC_CA_1_OCSP14_CN = EID- SK OCSP RESPONDER

DIGIDOC_CA_1_OCSP14_CA_CERT = jar: //certs/EID - SK.crt

DIGIDOC_CA_1_OCSP14_CA_CN = EID- SK

DIGIDOC_CA_1_OCSP14_URL = http://ocsp.sk.ee

DIGIDOC_CA_1_OCSP15_CA_CN = KLASS3- SK 2010

DIGIDOC_CA_1_OCSP15_CA_CERT = jar://certs/KLASS3 - SK 2010.crt

DIGIDOC_CA_1_OCSP15_CN = KLASS3- SK 2010 OCSP RESPONDER

DIGIDOC_CA_1_OCSP15_CERT = jar://certs/KLASS3 - SK 2010 OCSP.crt

DIGIDOC_CA_1_OCSP15_URL = http://ocsp.sk.ee

######## Test OCSP responders ##################

Should be commented out in case of live applications.

DIGIDOC_CA_1_OCSP16_CERT = jar://certs/TES T- SK OCSP 2005.crt

DIGIDOC_CA_1_OCSP16_CN = TEST- SK OCSP RESPONDER 2005

DIGIDOC_CA_1_OCSP16_CA_CERT = jar://certs/TEST - SK.crt

DIGIDOC_CA_1_OCSP16_CA_CN = TEST- SK

DIGIDOC_CA_1_OCSP16_URL = http://demo.sk.ee/ocsp

DIGIDOC_CA_1_OCSP17_CERT = jar://certs/TEST SK OCSP 2011.crt

DIGIDOC_CA_1_OCSP17_CN = TEST of SK OCSP RESPONDER 2011

DIGIDOC_CA_1_OCSP17_CA_CERT = jar://certs/TEST EECCRCA.crt

DIGIDOC_CA_1_OCSP17_CA_CN = TEST of EE Certification Centre Root CA

DIGIDOC_CA_1_OCSP17_URL = http://demo.sk.ee/ocsp

DIGIDOC_CA_1_OCSP18_CERT = jar://certs/TEST SK OCSP 2011.crt

DIGIDOC_CA_1_OCSP18_CN = TEST of SK OCSP RESPONDER 2011

DIGIDOC_CA_1_OCSP18_CA_CERT = jar://certs/KLASS3 - SK 2010.crt

DIGIDOC_CA_1_OCSP18_CA_CN = KLASS3- SK 2010

DIGIDOC_CA_1_OCSP18_URL = http://de mo.sk.ee/ocsp

DIGIDOC_CA_1_OCSP19_CA_CN = TEST of ESTEID - SK 2011

DIGIDOC_CA_1_OCSP19_CA_CERT = jar://certs/TEST ESTEID - SK 2011.crt

DIGIDOC_CA_1_OCS19_CN = TEST of SK OCSP RESPONDER 2011

DIGIDOC_CA_1_OCSP19_CERT = jar://certs/TEST SK OCSP 2011.crt

DIGIDOC_CA_1_OCSP19_URL = http://demo.sk.ee/ocsp

DIGIDOC_CA_1_OCSP20_CA_CN=TEST of ESTEID- SK 2015

DIGIDOC_CA_1_OCSP20_CA_CERT=jar://certs/TEST ESTEID - SK 2015.crt

DIGIDOC_CA_1_OCSP20_CN=TEST of SK OCSP RESPONDER 2011

DIGIDOC_CA_1_OCSP20_CERT=jar://certs/TEST SK OCSP 2011.crt

DIGIDOC_CA_1_OCSP20_URL=http://demo.sk.ee/ocsp

Encryption settings

http://demo.sk.ee/ocsp

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 79 / 80

DIGDOC_ENCRYPT_KEY_ALG=AES

DIGIDOC_ENCRYPTION_ALOGORITHM=AES/CBC/PKCS7Padding

DIGIDOC_SECRANDOM_ALGORITHM=SHA1PRNG

DIGIDOC_KEY_ALOGORITHM=RSA/NONE/PKCS1Padding

Appendix 2: Signature types

The signatures which are created can be either digital stamps, qualified electronic signatures
or technical signatures depending on the certificate which is used for signing and whether
OCSP confirmation is added or not.

Qualified electronic signature, i.e. ordinary digital signature

Qualified electronic signatures have the following characteristics:

 the certificate for signing has been issued to a private person,

 the signer’s certificate has “Non-repudiation” value in its “Key usage” field (see also
figure 1),

 the signature has OCSP confirmation.

Certificates which can be used for qualified electronic signature creation are stored on physical
identity tokens: ID-card, Digi-ID, Mobile-ID or cryptostick.

 A certificate with “Non-Repudiation” value in its “Key Usage” field

Digital stamp

Digital stamps are same as qualified electronic signatures, except of the certificate type that
has been used for creating the signature. Digital stamps have the following characteristics:

 the certificate for signing is a “digital stamp” certificate issued to an organization (i.e.
legal entity),

 the certificate has “Non-repudiation” value in its “Key usage” field (see also figure
above),

 the signature has OCSP confirmation.

Digital stamp certificates are issued by AS Sertifitseerimiskeskus (SK) (see also
https://www.sk.ee/en/services/Digital-stamp/), the certificates are stored on cryptosticks.

Technical signature

https://www.sk.ee/en/services/Digital-stamp/

SK-JDD-PRG-GUIDE

JDigiDoc Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 80 / 80

Technical signatures are signatures which have at least one of the following characteristics:

 the signer’s certificate does not have “Non-repudiation” value in its “Key usage” field
(see also figure below),

 OCSP confirmation has not been added to the signature.

Technical signatures can be created both by private persons and organizations.

Note: verification of a technical signature is expected to produce specific error message(s)
depending on the signature’s properties:

 technical signature with no OCSP confirmation is expected to produce error
message “Signature has no OCSP confirmation!”.

 technical signature which has been created with a certificate that doesn’t have “Non-
repudiation” value in its “Key usage” field is expected to produce error message
“Signer’s cert does not have non-repudiation bit set!”.

A certificate with “Key Encipherment” value in its “Key Usage” field

Note that in the meaning of Estonian legislation (see [10]), qualified electronic signatures and
digital stamps are equivalent to handwritten signatures whereas technical signatures are not.

	1. Document versions
	2. Introduction
	2.1 About DigiDoc
	2.2 Format of digitally signed file
	2.2.1 BDOC 2.1 file format
	2.2.2 DIGIDOC-XML 1.3 file format
	2.2.3 Comparison of BDOC 2.1 and DIGIDOC-XML 1.3 implementations
	2.2.4 DigiDoc time-marking security model

	3. Overview
	3.1 References and additional resources
	3.2 Terms and acronyms
	3.3 Supported functional properties
	3.4 Component model
	3.5 JDigiDoc architecture
	3.6 Dependencies
	3.7 Environment

	4. Configuring JDigiDoc
	4.1 Loading configuration settings
	4.2 Configuration parameters

	5. Using JDigiDoc API
	5.1 Digital signing
	5.1.1 Initialization
	5.1.2 Creating a DigiDoc document
	5.1.3 Adding data files
	5.1.3.1 Adding data file from file system
	5.1.3.2 Adding data file from byte array in memory

	5.1.4 Adding signatures
	5.1.5 Adding an OCSP confirmation
	5.1.6 Reading and writing digidoc documents

	5.2 Validating signed documents
	5.2.1 Reading and parsing the DigiDoc document
	5.2.2 Using the main validation method
	5.2.3 Checking for additional errors/warnings
	5.2.3.1 Checking for test signature

	5.2.4 Determining the validation status
	5.2.4.1 Validation status VALID WITH WARNINGS

	5.2.5 Additional information about validation
	5.2.5.1 Validating document’s structure separately
	5.2.5.1 Validating signatures separately
	5.2.5.2 Overview of validation activities

	5.3 Encryption and decryption
	5.3.1 Format of the encrypted file
	5.3.2 Encryption
	5.3.2.1 Creating EncryptedData object
	5.3.2.2 Adding recipient info
	5.3.2.3 Setting the encryption properties
	5.3.2.4 Encryption and data storage

	5.3.3 Parsing and decryption

	6. JDigiDoc utility program
	6.1 General commands
	6.2 Digital signature commands
	6.2.1 Creating new DigiDoc files and signing
	6.2.2 Reading DigiDoc files and verifying signatures

	6.3 Encryption commands
	6.3.1 Reading encrypted files
	6.3.2 Encrypting files
	6.3.3 Decrypting files

	7. National and cross-border support
	7.1 National PKI solutions and support
	7.1.1 Supported Estonian Identity tokens
	7.1.2 Trusted Estonian Certificate Authorities
	7.1.2.1 Supported SK live certificate hierarchy chains
	7.1.2.2 Supported SK test certificate hierarchy chains

	7.2 Cross-border support
	7.2.1 Trusted Service Provider Lists

	7.3 Interoperability testing
	7.3.1 XAdES/CAdES Remote Plugtests
	7.3.2 ASiC Remote Plugtests
	7.3.3 DigiDoc framework cross-usability tests
	7.3.4 Testing JDigiDoc API in JDigiDoc utility program

	8. JDigiDoc library’s implementation notes
	8.1 General implementation notes
	8.2 DIGIDOC-XML 1.3 specific implementation notes
	8.3 BDOC 2.1 specific implementation notes

	Appendix 1: JDigiDoc configuration file
	Appendix 2: Signature types

