
Required modifications to CDOC
for elliptic curve support

Document no.: A-101-7
Version 1.7
29.11.2017



Introduction
This document describes changes for CDOC format which enable confidentiality with the
help of Elliptic Curve Cryptography (ECC).

Currently, CDOC [CDOC] is based on [XMLENC] standard. It uniquely defines

• data encryption using algorithm and mode (AES128-CBC) and

• transport key encryption algorithm (RSA PKCS#1 v1.5).

The ECC support requires to use [XMLENC1] standard which defines a key exchange
primitive ECDH.

Using the newer version of the standard, it also becomes possible to use more secure
encryption algorithms.

The shortcomings of the current CDOC version are described in [CDOC10]. Specification
[CDOC20] describes possible improvements for these shortcomings; however, the required
modifications are large and therefore affect application structure significantly.

The changes described in the current document are small and can therefore be implemented
faster. From the changes described in document [CDOC10] only encryption algorithms and
related modes will be taken (instead of AES128-CBC, AES256-GCM will be used).

Backward Compatibility
New and old CDOC version software implementation backward compatibility rules are the
following.

• New software will support reading files created with the old version.

• New software creates only files which old version cannot read (ECC as well as RSA key
based). We assume that most of the users open encrypted files with the help of the
official base software, therefore big problems when reading files should not occur after
the base software update.

In case the functionality of opening the encrypted files is integrated into some other software
package, this software package also needs updating.

In case the functionality of encrypted file creation is integrated into some other software
package, its users will only be able to encrypt files to the recipients who have old ID cards
with RSA keys. To be able to encrypt files for new ID card holders, the software package
needs updating.

Implementations of the previous CDOC format made incorrect use of the EncryptionProperty
elements. Attribute Name is not allowed for this element. The resulting XML was not
conformant to XML Encryption Core Schema.

Example of incorrect usage:

Document ID: A-101-7

Required modifications to CDOC for elliptic curve support: 
 
29.11.2017

1.7
 

1 / 7



<denc:EncryptionProperty
Name="LibraryVersion">qdigidocclient|3.13.2.1498</denc:Encryption
Property>

Correct usage would be for example:

<denc:EncryptionProperty>
    <LibraryVersion>qdigidocclient|3.13.2.1498</LibraryVersion>
</denc:EncryptionProperty>

Applications that implement this specification should not produce old, incorrect XML. Only
those applications that must be able to receive and process both old and new formats should
support the old, incorrectly formatted XML documents.

This specification does not mandate the usage of specific EncryptionProperty elements.

Applications that should support both old and new formats can base the decision which
codepath to use for processing and decrypting of the document on several markers. Since
the decision should be done at the very beginning of the processing, before the document
has been parsed, the most useful test can be based on the presence of the incorrect
EncryptionProperty elements. Whenever such element is present old codepath must be
used. Otherwise document should be processed as new.

It is expected that new applications do not hardcode processing of the EncryptedData
element. I.e. values and methods specified in this document should be seen as a profile of
[XMLENC1] that can be changed in later versions. Applications can implement only subset of
the EncryptedData processing and whenever they encounter algorithm or construct that
they do not support, should report it as not supported and not to claim that document is
invalid.

Data Encryption
The file is encrypted using one random 256-bit (32-byte) symmetric key. For encryption,
AES256-GCM algorithm [SP800-38D] is used. Encryption and decryption are performed the
way described in section 5.2.4 of [XMLENC1].

The 12-byte initialization vector is generated randomly.

It should be taken into account that using AES256-GCM algorithm, the largest file that can be
encrypted is 2^39-256 bits or almost 64 gigabytes [SP800-38D].

Data Decryption
Before returning any plaintext data, the decryption must verify that the GMAC authentication
code calculated over the ciphertext matches the 16-byte checksum appended at the end of
the ciphertext. In case the checksum does not match, an error shall be given instead of
returning the plaintext.

Document ID: A-101-7

Required modifications to CDOC for elliptic curve support: 
 
29.11.2017

1.7
 

2 / 7



Transport Key Encryption for RSA
Certificate Owners
For the owners of RSA certificates, transport key is encrypted with the recipient’s public key,
using PKCS#1 v1.5 padding scheme, and the result is formatted as described in [CDOC].
The result is an EncryptedKey element where EncryptionMethod element denotes the
encryption algorithm http://www.w3.org/2001/04/xmlenc#rsa-1_5.

Against the padding scheme used in PKCS#1 v1.5, the so-called Bleichenbacher attack
[Bleichenbacher98] is known. Its applicability and optimization possibilities against Estonian
ID card were analyzed by Bardou et al. in 2012 [BFKSST12].

In this attack the attacker uses ID card as an oracle, submitting his decryption queries and
receiving response info about successful decryption (but not necessarily decrypted files).

As a result of acquiring a large number of such queries, the attacker could decrypt one file
which query was not among in the original ones. It is important to note that the secret key
itself does not leak as a result of this attack.

Bardou et al. estimated that such an attack against one ID card requires 28300 queries, or
around 27 hours in total. Note that for a successful query, the attacker also needs the PIN1
code. The same way the attacker having access to an ID card and its PIN1 code could just
decrypt the needed file, which makes the described attack against the ID card essentially
worthless.

Transport Key Encryption for ECC
Certificate Owners
For the owners of ECC certificates, the AES256-GCM transport key is encrypted with KW-
AES256 key wrapping algorithm using 32-byte key derived from the 48-byte shared secret.
The shared secret is calculated using ECDH key exchange algorithm involving the sender’s
ephemeral ECC key and the public ECC key from the recipient’s authentication certificate.

ECDH key exchange uses the same key which is also used for authentication. Since ECC
authentication in turn relies on ECDSA signature scheme, this solution rises the question
whether the use of ECDH and ECDSA with the same key is secure.

This question was studied in 2011 by Degabriele et al [DLPSS11]. They gave ECDH and
ECDSA co-usage security proof in the so-called generic group model, where the attacker is
allowed to use only elliptic curve point group operations.

Generic group model is weaker than the so-called concrete model, where the attacker can
also access the implementation, use algebraic properties of the specific curve, etc.

At the same time, the best known attacks against elliptic curve cryptography are not able to
exploit the operations beyond these of the generic group. This is, among other things, also
the reason why cryptographic primitives relying on elliptic curves allow us to use much
shorter keys compared to RSA.

It is also worth noting that the security of ECDSA signature scheme itself is proved only in
generic group model [HMV06].

Document ID: A-101-7

Required modifications to CDOC for elliptic curve support: 
 
29.11.2017

1.7
 

3 / 7

http://www.w3.org/2001/04/xmlenc#rsa-1_5
http://www.w3.org/2001/04/xmlenc#rsa-1_5
http://www.w3.org/2001/04/xmlenc#rsa-1_5
http://www.w3.org/2001/04/xmlenc#rsa-1_5
http://www.w3.org/2001/04/xmlenc#rsa-1_5
http://www.w3.org/2001/04/xmlenc#rsa-1_5
http://www.w3.org/2001/04/xmlenc#rsa-1_5
http://www.w3.org/2001/04/xmlenc#rsa-1_5
http://www.w3.org/2001/04/xmlenc#rsa-1_5


ECC Transport Key Encryption
Encryption process is the following.

1. Sender takes from the recipient’s certificate his ECC public key Rp and the description of
the used curve.

2. Sender generates an ephemeral ECC private and public key pair (Ss,Sp) using the
same curve as used by the recipient. For each ECC recipient, a new ephemeral key is
generated.

3. Sender calculates (in memory) the result of ECDH key exchange operation Ksr, using
his own ephemeral private key Ss and recipient’s public key Rp.

4. Sender derives 32-byte wrapping key from the shared secret Ksr. For key derivation, the
algorithm http://www.w3.org/2009/xmlenc11#ConcatKDF is used. The key
derivation algorithm and the choosing logic for its parameters is explained in document
[SP800-56Ar2] section 5.8 and appendix B. In the context of this specification, the
derived key is linked to this algorithm specification, sender’s identifier and recipient’s
identifier.

5. Sender encrypts the 32-byte AES256-GCM transport key with the 32-byte wrapping key.
See [XMLENC1], section 5.7.

6. Sender forms EncryptedKey element with the following subelements.

◦ EncryptionMethod encryption algorithm is http://www.w3.org/2001/04/
xmlenc#kw-aes256.

◦ CipherValue is the encrypted transport key.

◦ In the KeyInfo there is the AgreementMethod element, where

▪ Algorithm attribute denotes the algorithm http://www.w3.org/2009/
xmlenc11#ECDH-ES and

▪ xenc11:KeyDerivationMethod subelement denotes the key derivation
algorithm http://www.w3.org/2009/xmlenc11#ConcatKDF.

▪ xenc11:ConcatKDFParams subelement determines key derivation
algorithm parameters.

▪ The hash function used for key derivation is http://www.w3.org/
2001/04/xmlenc#sha384. The choice of the hash function is based on
the recommendation in the document [SP800-56Ar2] section 5.8.1 table 7.

▪ AlgorithmID attribute value is set to the byte string "ENCDOC-
XML|1.1".

▪ PartyUInfo attribute value is the sender’s public key (base64-decoded
PublicKey value of the OriginatorKeyInfo element).

▪ PartyVInfo attribute value is the recipient’s certificate (base64-decoded
X509 value of the RecipientKeyInfo element).

▪ Under OriginatorKeyInfo there is the dsig11:ECKeyValue subelement,
having the value of the public key Sp of sender’s ephemeral ECC key pair.

▪ Under RecipientKeyInfo subelement there is the subelement ds:X509Data
containing the recipient’s certificate.

See also [XMLENC1] EXAMPLE 42.

Document ID: A-101-7

Required modifications to CDOC for elliptic curve support: 
 
29.11.2017

1.7
 

4 / 7

http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2009/xmlenc11#ECDH-ES
http://www.w3.org/2009/xmlenc11#ECDH-ES
http://www.w3.org/2009/xmlenc11#ECDH-ES
http://www.w3.org/2009/xmlenc11#ECDH-ES
http://www.w3.org/2009/xmlenc11#ECDH-ES
http://www.w3.org/2009/xmlenc11#ECDH-ES
http://www.w3.org/2009/xmlenc11#ECDH-ES
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2001/04/xmlenc#sha384
http://www.w3.org/2001/04/xmlenc#sha384
http://www.w3.org/2001/04/xmlenc#sha384
http://www.w3.org/2001/04/xmlenc#sha384
http://www.w3.org/2001/04/xmlenc#sha384
http://www.w3.org/2001/04/xmlenc#sha384
http://www.w3.org/2001/04/xmlenc#sha384
http://www.w3.org/2001/04/xmlenc#sha384
http://www.w3.org/2001/04/xmlenc#sha384




[SP800-56Ar2] does not specify how additional attributes should be
concatenated and if and how the length of invididual attributes should be
encoded. Several options are described, but the choice of the particular
method is left to the applications. Several publicly available libraries
([MSRJSCL], [JOSE4J]) that implement ConcatKDF algorithm just
concatenate the attributes without any information about the length of the
attributes. For ease of implementation and interoperability this option should
also be used for CDOC.

ECC Transport Key Decryption
Decryption process is the following.

1. Recipient finds the EncryptedKey element where the subelement X509 of the
subelement RecipientKeyInfo identifies the recipient’s authentication certificate, for
which he has the corresponding private key.

2. Recipient verifies that it understands and supports all the algorithms and parameters
used on the sender’s side.

◦ Data encryption algorithm is http://www.w3.org/2009/xmlenc11#aes256-
gcm.

◦ EncryptionMethod element denotes the key encryption algorithm
http://www.w3.org/2001/04/xmlenc#kw-aes256.

◦ AgreementMethod element algorithm is http://www.w3.org/2009/xmlenc11#
ECDH-ES.

◦ xenc11:KeyDerivationMethod subelement denotes the key derivation algorithm
http://www.w3.org/2009/xmlenc11#ConcatKDF.

◦ xenc11:ConcatKDFParams hash function is http://www.w3.org/2001/04/
xmlenc#sha384.

3. Recipient verifies attributes of the ConcatKDFParams element.

◦ AlgorithmID attribute value must match the byte string "ENCDOC-XML|1.1".

◦ PartyUInfo attribute value must match the sender’s public key in
OriginatorKeyInfo element.

◦ PartyVInfo attribute value must match the recipient’s certificate specified in the
RecipientKeyInfo element.

4. From OriginatorKeyInfo the recipient takes the subelement dsig11:ECKeyValue
containing the sender’s ephemeral public ECC key Sp.

5. Recipient performs in his ID card the ECDH key exchange, using private authentication
key Rs stored on the card, and the sender’s public key Sp. Key exchange result is the
shared secret Ksr.

◦ Note that, before performing the cryptographic operation of generating Ksr from Rs
and Sp, the recipient should verify that Sp actually encodes a valid point on the used
elliptic curve. If this check is not performed, the system becomes vulnerable to invalid
curve attacks ([BMM2000], [JSS2015]). The currently used ID card implements such
a verification, but it is important to demand this functionality also from the future
generations of ID cards.

Document ID: A-101-7

Required modifications to CDOC for elliptic curve support: 
 
29.11.2017

1.7
 

5 / 7

http://www.w3.org/2009/xmlenc11#aes256-gcm
http://www.w3.org/2009/xmlenc11#aes256-gcm
http://www.w3.org/2009/xmlenc11#aes256-gcm
http://www.w3.org/2009/xmlenc11#aes256-gcm
http://www.w3.org/2009/xmlenc11#aes256-gcm
http://www.w3.org/2009/xmlenc11#aes256-gcm
http://www.w3.org/2009/xmlenc11#aes256-gcm
http://www.w3.org/2009/xmlenc11#aes256-gcm
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2009/xmlenc11#ECDH-ES
http://www.w3.org/2009/xmlenc11#ECDH-ES
http://www.w3.org/2009/xmlenc11#ECDH-ES
http://www.w3.org/2009/xmlenc11#ECDH-ES
http://www.w3.org/2009/xmlenc11#ECDH-ES
http://www.w3.org/2009/xmlenc11#ECDH-ES
http://www.w3.org/2009/xmlenc11#ECDH-ES
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2001/04/xmlenc#sha384
http://www.w3.org/2001/04/xmlenc#sha384
http://www.w3.org/2001/04/xmlenc#sha384
http://www.w3.org/2001/04/xmlenc#sha384
http://www.w3.org/2001/04/xmlenc#sha384
http://www.w3.org/2001/04/xmlenc#sha384
http://www.w3.org/2001/04/xmlenc#sha384
http://www.w3.org/2001/04/xmlenc#sha384
http://www.w3.org/2001/04/xmlenc#sha384


6. Recipient derives the transport key wrapping key from the shared secret Ksr. Sender
must have been using the http://www.w3.org/2009/xmlenc11#ConcatKDF
algorithm.

7. Recipient uses the derived key to decrypt the wrapped transport key. Sender must have
been using the http://www.w3.org/2001/04/xmlenc#kw-aes256 algorithm.

8. With the obtained transport key, the data is decrypted using the algorithm
http://www.w3.org/2009/xmlenc11#aes256-gcm.

References
• [XMLENC] "XML Encryption Syntax and Processing", https://www.w3.org/TR/xmlenc-

core/

• [XMLENC1] "XML Encryption Syntax and Processing Version 1.1", https://www.w3.org/
TR/xmlenc-core1/

• [CDOC] "Encrypted DigiDoc Format Specification, Document Version 1.1"
https://www.id.ee/public/SK-CDOC-1.0-20120625_EN.pdf

• [CDOC10] "CDOC 1.0 Notes and caveats", https://github.com/martinpaljak/idcrypt/wiki/
CDOC-1.0

• [CDOC20] "CDOCv2 DRAFT v0.1", https://github.com/martinpaljak/idcrypt/wiki/CDOC-
2.0

• [SP800-56Ar2] "NIST Special Publication 800-56A Revision 2. Recommendation for
Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography",
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf

• [SP800-38D] "NIST Special Publication 800-38D. Recommendation for Block Cipher
Modes of Operation: Galois/Counter Mode (GCM) and GMAC", http://nvlpubs.nist.gov/
nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

• [BMM2000] Ingrid Biehl, Bernd Meyer, and Volker Müller. "Differential fault attacks on
elliptic curve cryptosystems." In Advances in Cryptology—CRYPTO 2000, pp. 131-146.
Springer Berlin/Heidelberg, 2000.

• [Bleichenbacher98] Daniel Bleichenbacher: Chosen Ciphertext Attacks against
Protocols Based on the RSA Encryption Standard PKCS #1. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 1–12. Springer, Heidelberg (1998).

• [BFKSST12] Romain Bardou, Riccardo Focardi, Yusuke Kawamoto, Lorenzo
Simionato, Graham Steel, Joe-Kai Tsay: Efficient Padding Oracle Attacks on
Cryptographic Hardware. In CRYPTO 2012. LNCS, vol. 7417, pp. 608-625. Springer,
Heidelberg (2012).

• [DLPSS11] Jean Paul Degabriele, Anja Lehmann, Kenneth G. Paterson, Nigel P.
Smart, and Mario Strefler. "On the joint security of encryption and signature in EMV."
Cryptology ePrint Archive: Report 2011/615, https://eprint.iacr.org/2011/615

• [HMV06] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to elliptic
curve cryptography. Springer Science & Business Media, 2006.

• [JSS2015] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. "Practical invalid curve
attacks on TLS-ECDH." In European Symposium on Research in Computer Security, pp.
407-425. Springer International Publishing, 2015.

• [MSRJSCL] "MSR JavaScript Cryptography Library", https://www.microsoft.com/en-us/

Document ID: A-101-7

Required modifications to CDOC for elliptic curve support: 
 
29.11.2017

1.7
 

6 / 7

http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2009/xmlenc11#ConcatKDF
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2009/xmlenc11#aes256-gcm
http://www.w3.org/2009/xmlenc11#aes256-gcm
http://www.w3.org/2009/xmlenc11#aes256-gcm
http://www.w3.org/2009/xmlenc11#aes256-gcm
http://www.w3.org/2009/xmlenc11#aes256-gcm
http://www.w3.org/2009/xmlenc11#aes256-gcm
http://www.w3.org/2009/xmlenc11#aes256-gcm
https://www.w3.org/TR/xmlenc-core/
https://www.w3.org/TR/xmlenc-core/
https://www.w3.org/TR/xmlenc-core/
https://www.w3.org/TR/xmlenc-core/
https://www.w3.org/TR/xmlenc-core/
https://www.w3.org/TR/xmlenc-core/
https://www.w3.org/TR/xmlenc-core1/
https://www.w3.org/TR/xmlenc-core1/
https://www.w3.org/TR/xmlenc-core1/
https://www.w3.org/TR/xmlenc-core1/
https://www.w3.org/TR/xmlenc-core1/
https://www.id.ee/public/SK-CDOC-1.0-20120625_EN.pdf
https://www.id.ee/public/SK-CDOC-1.0-20120625_EN.pdf
https://www.id.ee/public/SK-CDOC-1.0-20120625_EN.pdf
https://www.id.ee/public/SK-CDOC-1.0-20120625_EN.pdf
https://www.id.ee/public/SK-CDOC-1.0-20120625_EN.pdf
https://github.com/martinpaljak/idcrypt/wiki/CDOC-1.0
https://github.com/martinpaljak/idcrypt/wiki/CDOC-1.0
https://github.com/martinpaljak/idcrypt/wiki/CDOC-1.0
https://github.com/martinpaljak/idcrypt/wiki/CDOC-1.0
https://github.com/martinpaljak/idcrypt/wiki/CDOC-1.0
https://github.com/martinpaljak/idcrypt/wiki/CDOC-1.0
https://github.com/martinpaljak/idcrypt/wiki/CDOC-1.0
https://github.com/martinpaljak/idcrypt/wiki/CDOC-1.0
https://github.com/martinpaljak/idcrypt/wiki/CDOC-1.0
https://github.com/martinpaljak/idcrypt/wiki/CDOC-2.0
https://github.com/martinpaljak/idcrypt/wiki/CDOC-2.0
https://github.com/martinpaljak/idcrypt/wiki/CDOC-2.0
https://github.com/martinpaljak/idcrypt/wiki/CDOC-2.0
https://github.com/martinpaljak/idcrypt/wiki/CDOC-2.0
https://github.com/martinpaljak/idcrypt/wiki/CDOC-2.0
https://github.com/martinpaljak/idcrypt/wiki/CDOC-2.0
https://github.com/martinpaljak/idcrypt/wiki/CDOC-2.0
https://github.com/martinpaljak/idcrypt/wiki/CDOC-2.0
https://github.com/martinpaljak/idcrypt/wiki/CDOC-2.0
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://eprint.iacr.org/2011/615
https://eprint.iacr.org/2011/615
https://eprint.iacr.org/2011/615
https://eprint.iacr.org/2011/615
https://eprint.iacr.org/2011/615
https://www.microsoft.com/en-us/research/project/msr-javascript-cryptography-library/
https://www.microsoft.com/en-us/research/project/msr-javascript-cryptography-library/
https://www.microsoft.com/en-us/research/project/msr-javascript-cryptography-library/
https://www.microsoft.com/en-us/research/project/msr-javascript-cryptography-library/


research/project/msr-javascript-cryptography-library/

• [JOSE4J] "jose.4.j", https://bitbucket.org/b_c/jose4j/wiki/Home

Document ID: A-101-7

Required modifications to CDOC for elliptic curve support: 
 
29.11.2017

1.7
 

7 / 7

https://www.microsoft.com/en-us/research/project/msr-javascript-cryptography-library/
https://www.microsoft.com/en-us/research/project/msr-javascript-cryptography-library/
https://www.microsoft.com/en-us/research/project/msr-javascript-cryptography-library/
https://bitbucket.org/b_c/jose4j/wiki/Home
https://bitbucket.org/b_c/jose4j/wiki/Home
https://bitbucket.org/b_c/jose4j/wiki/Home
https://bitbucket.org/b_c/jose4j/wiki/Home
https://bitbucket.org/b_c/jose4j/wiki/Home
https://bitbucket.org/b_c/jose4j/wiki/Home
https://bitbucket.org/b_c/jose4j/wiki/Home
https://bitbucket.org/b_c/jose4j/wiki/Home
https://bitbucket.org/b_c/jose4j/wiki/Home

	Required modifications to CDOC for elliptic curve support
	Introduction
	Backward Compatibility
	Data Encryption
	Data Decryption
	Transport Key Encryption for RSA Certificate Owners
	Transport Key Encryption for ECC Certificate Owners
	ECC Transport Key Encryption
	ECC Transport Key Decryption

	References

